PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancement in magnetic and electrical properties of Ni substituted Mg ferrite

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, Ni substituted magnesium spinel ferrites having general formula Mg1−xNixFe2O4(where x = 0.0, 0.1, 0.15, 0.2, 0.25 and 0.3) were synthesized by standard solid state reaction method. All the samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), DC resistivity measurements. X-ray diffraction analysis confirmed the single spinel phase. The lattice constant decreased with increasing Ni content due to the difference in the ionic radii of Mg2+and Ni2+ ions. The FT-IR spectra reveled two prominent frequency bands in the wave number range of 400 cm−1 to 600 cm−1, which confirmed the cubic spinel structure of obtained compound and completion of chemical reaction. Magnetic studies revealed that the saturation magnetization increased with the substitution of Ni. The increase in magnetization was explained on the basis of distribution of magnetic and non-magnetic cations among A and B sites of the spinel lattice. A significant influence of cation distribution on DC electrical resistivity and activation energy was observed.
Słowa kluczowe
Wydawca
Rocznik
Strony
644--654
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Department of Physics, Andhra University, Visakhapatnam, 530003, A.P., India
  • Department of Physics, G.V.P. College of Engineering for Women, Visakhapatnam, 530048, A.P., India
  • Department of Engineering Chemistry, AU College of Engineering, Visakhapatnam, 530003 A.P., India
autor
  • Department of Physics, Andhra University, Visakhapatnam, 530003, A.P., India
  • Department of Physics, Andhra University, Visakhapatnam, 530003, A.P., India
  • Advanced Functional Materials Research Centre, Department of Physics, KL University, Guntur, A.P., India
  • Department of Physics, Andhra University, Visakhapatnam, 530003, A.P., India
Bibliografia
  • [1] Gadem N.N., Kadu A.V., Padole P.R., Bodade A.B., Chaudhari G.N., Sens. Trans., 110 (2011), 86.
  • [2] Goldman A., Modern Ferrite Technology, Springer, New York, 1990.
  • [3] Tatarchuk T., Bououdina M., Vijaya J., Kennedy J.L., Spinel Ferrite Nanoparticles: Synthesis, Crystal Structure, Properties, and Perspective Applications, in: Fesenko O., Yatsenko L. (Eds.) Nanophysics, Nanomaterials, Interface Studies, and Applications, Springer, Cham, Switzerland 2017, p.305.
  • [4] El Hiti M., Phase Transit., 54 (1995), 117.
  • [5] Lakshman A., Rao S.V.P., Rao P.B., Rao K.H., J. Phys. D Appl. Phys., 38 (2005), 673.
  • [6] Ravindre D., Reddy V.B.P., J. Magn. Magn. Mater., 263 (2003), 127.
  • [7] Thant A.A., Srimala S., Caung P., J. Aust. Ceram. Soc., 46 (2010), 11.
  • [8] Salmi S., El Azhari M., El Grini A., Hourmatallah A., Benzakour N., Bouslykhane K., Marzouk A., IOP Conf. Ser. Mater. Sci. Eng., 186 (2017), 1.
  • [9] Iqbal M.J, Ahmad Z., Meydan T., Nlebedim I.C., Mater. Res. Bull., 47 (2012), 344.
  • [10] Mccusker L.B., Dreele von R.B., Cox D.E., Louër D., Scardi P., J. Appl. Crystallogr., 32 (1999), 36.
  • [11] Henderson M.B., Charnock J.M., Plant D.A., J. Phys.-Condens. Mat., 19 (2007), 076214.
  • [12] Airimioaei M., Palamaru M.N., Iordan A.R., Berthet P., Decorse C., Curecheriu L., Mitoseriu L., J. Am. Ceram. Soc., 97 (2014), 519.
  • [13] Haque M.M., Maria K.H., Choudhury S., Bhuiyan M.A., Hakim M.A., JCPR, 14 (2013) 82.
  • [14] Burger M.J., J. Crystal-structure Analysis, John Wiley, New York, 1960.
  • [15] Patange S.M., Shirsath S.E, Toksha B.G, Jadhav S.S., Shukla S.J, Jadhav K.M., Appl. Phys. A Mater., 95 (2009), 429.
  • [16] Kumar E.R., Kamzin A.S., Prakash T., J. Magn. Magn. Mater., 378 (2015), 389.
  • [17] Berchmans L.J., Selvan R.K., Kumar P.N.S., Augustin C.O, J. Magn. Magn. Mater., 279 (2004), 103.
  • [18] Waldron R.D., Phys. Rev., 99 (1955), 1727.
  • [19] Franco A.JR., Silva M.S., J. Appl. Phys., 109 (2011), 07B505.
  • [20] Loganathan A., Kumar K., IJCR, 7 (2015),20585.
  • [21] Uitert van L.G., J. Chem. Phys., 23 (1955), 1883.
  • [22] Bhavikattia A.M., Mallikarjun M., IJSR., 12 (2015), 232.
  • [23] El Hiti M.A., J. Phys. D Appl. Phys., 29 (1996), 501.
  • [24] El-Sayed A.M., Mater. Chem. Phys., 82 (2003), 583.
  • [25] Methasiri T., Yoodee K., Tang I.M., Physica B, 101 (1980), 243.
  • [26] Ramarao K., Rajesh Babu B., Kishore Babu B., Veeraiah V., Ramarao S.D., Rajasekhar K., Venkateswara Rao A., Physica B., 528 (2018), 18.
  • [27] Ramarao K., Rajesh Babu B., Kishore Babu B., Veeraiah V., Ramarao S.D., Rajasekhar K., Venkateswara Rao A., J. Electron. Mater., 47 (2018), 2997.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b22d3ba-425b-406e-b4b2-66587b0997fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.