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Abstract: Auxetic materials exhibit the very unusual property of becoming wider when
stretched and narrower when compressed, — they have a negative Poisson’s ratio. This unusual
behaviour is the source of many desired effects in the materials’ properties and it is therefore, no
wonder that auxetics are described as being superior to conventional materials in many practical
applications. Here we make use of force-field based molecular modelling simulations in order to
investigate the mechanical properties of polypehyleacetylene systems known as (n, m)-flexyne
and (n, m)-reflexyne in an attempt to extend the existing knowledge there is regarding these
systems. These systems have already attracted considerable consideration since negative on-axis
Poisson’s ratios have been discovered for the reflexynes.

We first developed a methodology for the modelling and property determination of
flexyne and reflexyne network systems which we validated against existing published data.
Then, extended the study to prove the simulated results were independent of the modelling
methodology or the force-field used. In particular, we showed that on-axis auxeticity in the
reflexynes is a force-field independent property, i.e. a property which is not an artefact of the
simulations but a property which is likely to be present in the real materials if these were to be
synthesised.

We also studied and reported the shear behaviour of these systems were we show that
the flexynes and reflexynes have very low shear moduli, a property which regrettably limits
the prospects of these systems in many practical applications. Finally we examine the in-plane
off-axis mechanical properties of the systems and we report that in general, these mechanical
properties are highly dependent on the direction of loading. We also find that the auxeticity
exhibited by the reflexynes on-axis is lost when these systems are loaded off axis since the
Poisson’s ratios becomes positive very rapidly as the structure is stretched slightly off-axis (e.g.
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15deg off-axis). This is once again of great practical significance as it highlights another major
limitation of these systems in their use as auxetics.

Keywords: 2D flexyne polyphenylacetylene networks, 2D reflexyne polyphenylacetylene net-
works, auxetics, molecular simulations

1. Introduction

Most materials (e.g. rubber, glass, metals, etc.), have a positive Poisson’s
ratio, meaning that they contract transversely when pulled longitudinally and
expand transversely when compressed longitudinally. However a small number
of naturally occurring and synthetic substances exhibit the unusual property
of doing the opposite, that is, they become wider when stretched and thinner
when compressed. These unusual materials are now known as auxetics, a word
derived from the Greek auzetos meaning “which can be increased” [1], but have
also occasionally been referred to as “anti-rubber” [2], “dilational” [3] or “self-
expanding” [4].

Mathematically, the Poisson’s ratio, v, in the XY plane cross-section of
the materials for loading in the X-direction is defined as the ratio of a lateral
contraction to the longitudinal extension during stretching of a material for
specified directions, v = —¢,/e,, where ¢, is the strain in the transverse Y-
direction and ¢, is the strain in the longitudinal X-direction. For most materials
this value is positive since a positive e, (i.e. extension in the X-direction) is
accompanied by a negative ¢, (i.e. a contraction in the Y-direction). Also, for most
everyday materials, the Poisson’s ratios are the same irrespective of the particular
cross-section of materials studied, and the direction of loading plane (isotropic).
Typical values for Poisson’s ratios for commonly used materials include 0.5 for
rubbers and for soft biological tissues, 0.45 for lead, 0.33 for aluminium, 0.27 for
common steels, 0.1 to 0.4 for cellular solids such as typical polymer foams, and
nearly zero for cork [5]. Materials can also be anisotropic which implies that the
physical properties of the system depend on the direction of the applied stretching.
For instance, in some crystals, the Poisson’s ratio v can be positive in one direction
and negative in another.

The first mention of a material with a negative Poisson’s ratio dates back
to 1944 when it was reported that crystals of iron pyrite exhibited a negative
Poisson’s ratio [6]. However, this was treated as an anomaly and the study
of materials with negative Poisson’s ratio only took off in the 1980’s, with
auxetic behaviour being experimentally measured or predicted in various types
of materials such as foams, [5, 7-11] nano-structured and liquid crystalline
polymers [1, 12, 4, 13—15], micro structured polymers [16—18], cubic materials [19]
and zeolites [20]. Despite considerable progress in this field which is evidenced by
the growth in literature in the last couple of decades, the design and synthesis
of materials with v < 0 still remain somewhat of a real challenge. Since these
materials are quite rare in nature and extremely useful, the impetus for them to
be designed, studied and manufactured is great and has attracted experts such as
scientists and engineers.
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Auxetic materials are not only interesting scientifically for their rare and
counter-intuitive elastic behaviour, but also for a number of potentially useful
technological applications. For example, for an isotropic material, a negative
value of the Poisson’s ratio alters significantly the other mechanical properties.
Generally there are four constants which are used to describe the elastic behaviour
of an isotropic material and these are the Young’s Modulus (E), the shear modulus
(G), the bulk modulus (K) and the Poisson ratio (v), but these four constants
are interdependent through the following relationships:
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The importance of these four equations lies in the fact, that knowing any two out of
the four parameters the third parameter may be obtained by a simple calculation.
Furthermore these relationships give a very good picture of the properties of the
system.

In spite of all the advantages and new possibilities that these auxetic
materials offer together with their uncommon nature, there are still a number
of lacunae within the field which are yet to be studied thoroughly. Thus one
of the aims of this paper shall be to carry out a theoretical study on 2D
polyphenylacetylene “flexyne” and “reflexyne” networked polymers originally
reported by Evans et al. in 1991 [21] (see Figure 1 for an example) which despite
being the subject of various papers, have not been fully characterised as of yet.
These polyphenylacetylene networks are of interest since as reported by Evans
et al. [21] and in various other studies [21-25], the reflexyne networks are predicted
to mimic the behaviour of re-entrant hexagonal honeycombs [26, 27] and exhibit
negative on-axis Poisson’s ratios.

In this paper the 2D polyphenylacetylene “flexyne” and “reflexyne” net-
worked polymers will be studied using computer based modelling and simulations,
a technique which was chosen since so far these networks have not yet been syn-
thesised. In particular, (n, m)-flexynes and (n, m)-reflexynes, where, m and n are
the number of triple bonds on the vertical and side arms of the unit respectively,
will be studied.

(a) 1,4-reflexyne (b) 1,4-flexyne
(auxetic) (conventional)

Figure 1. (a) Pictorial representation of (1,4)-reflexyne and (b) (1,4)-flexyne
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2. Simulation methodology
Any modelling experiment involves three distinct stages, namely:

(a) Defining the system to be modelled;

(b) Setting up the energy expression and performing an energy minimisation;

(¢) Performing the particular calculations, in this case, simulation of the single
crystalline elastic constants.

2.1. Defining the system to be modelled

The first stage in any force-field based molecular modelling simulation
is to enter the coordinates of the atoms of the system under study into the
molecular modelling environment and to define the connectivity of these atoms.
This information (i.e. the initial coordinates of the atoms and initial definition
of the bonds) on which calculations will then be performed shall henceforth be
referred to as the starting geometry.

To illustrate the methodology used in this dissertation for constructing the
starting geometries of the flexyne and reflexyne networks, we shall discuss in detail
the procedure used to construct the (1,4)-flexyne and (1,4)-reflexyne systems.

The conventional and re-entrant infinite periodic honeycomb structures may
be constructed using a unit cell which contains two vertical chains and four arm
chains as illustrated in Figure 2 (a) and 3 (b), bearing in mind that in the molecular
system, each vertex of the honeycomb system represents a phenyl ring whilst the
vertical chains and the arm chains represent acetylene chains. The repeat unit of
(1,4)-flexyne and (1,4)-reflexyne would be the systems illustrated in Figure 2 (c)
and 3 (d), respectively.

These starting geometries in Figure 2(c) and 3 (d) were entered using the
model builder and templates available in Cerius? through the graphical user
interface (GUI). In this procedure, the user inserts all of the atoms into the system
and connects them together to define the “bonds” in the systems. This results in
a very rough sketch of the system which simply defines the atoms in the model and
how these atoms are connected in space (see Figure 3 (a) for the initial structure
for (1,4)-flexyne). The “Clean” function was then used to make the model look
more realistic (see Figure 3b). These atoms were then aligned in the y-z plane
(see Figure 3c¢), i.e. with the vertical ribs aligned parallel to the z-axes. This
alignment was selected because in Cerius?, crystals are aligned in such a way
that:

e The [001] crystal direction is always fixed parallel to the Z “global” direction;
e The [010] crystal direction always lies in the Y Z plane;
e The [100] crystal direction is free and as a result it may assume any direction.

Thus, by aligning the flexyne basic unit in this way, the user can be sure
that the crystal is always aligned to the Y Z plane with the vertical ribs remaining
parallel to the Z-direction.

These systems (which could be thought of as the monomers of infinitely
large networked polymers) were then converted into a crystal using the crystal
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building module. The initial cell parameters were set as a =3 =+~ =90deg whilst
a was set to 4A, b=11A and ¢=35A for (1,4)-reflexyne and ¢ =30A for (1,4)-
flexyne. The choice for the values of b and ¢ was made on visual observations
making sure that the unit cells fit properly within the cell border (see Figure 3d).
On the other hand, the choice of a was based on the fact that for graphite-like
systems, the “infinite” sheets are at a distance of about 3.6A from each other.
The final step in the inputting of the model involved joining the “free ends” of the
acetylene chains to the phenyl ring in adjacent cells to produce the (1,4)-flexyne
or (1,4)-reflexyne networks (Figure 3e).

2.2. Setting up the energy expression and energy minimization

Once the starting structure was inputted in Cerius?, it was necessary to set
up of the energy expression. The energy expression is an equation describing the
potential energy of the system as a function of its internal / Cartesian coordinates
and it is used by the molecular modelling program in the energy minimisation of
the system. In this dissertation, various force-fields which have been parameterised
for use with hydrocarbons were used, although in this validation study, only the
DREIDING 2.21 force-field is considered since all results on the flexyne /reflexyne
systems reported in the literature were obtained using this force-field (or earlier
versions of it).

The DREIDING 2.21 force-field has an energy expression which is con-
structed from bonding and non-bond interactions:

DREIDING __ ;nDREIDING DREIDING
E — valence +Enon—bond (2)

where, for the hydrocarbons in our system (which do not have any inversion
terms or H-bonding), the valence bond-terms are described by a harmonic bond
stretch term, a harmonic angle bending term and a dihedral torsion angle term,
whilst the non-bond terms are described by the standard Columbic term and the
Lennard-Jones 12-6 VDW potential, i.e.:

1 1
DREIDING 2 2
Ealénce = E ikS (l*lo) + E ékh (0790) +
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where all terms have their usual meaning.

It is important to note that this force-field, despite having a term for
the Columbic interactions, does not contain any information relating to the
partial atomic charges of the system that are needed for use with this term.
Instead, these partial charges have to be computed through a separate method.
In this dissertation, these charges were computed using the Charge-Equilibration
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Figure 2. A figure showing the arrangement in space of the conventional (a) and re-entrant
honeycombs (b), respectively, and the starting geometries as inputted into Cerius?,
(c) and (d) respectively

procedure developed by Rappe et al. [28]. This procedure was chosen in preference
to the older but still widely in use Gasteigner-Marsili method since the Gasteigner-
Marsili method is not recommended for use with delocalized systems, i.e. systems
which are similar to the ones discussed in this dissertation.

Furthermore, due to the fact that our systems are actually representing an
infinite amount of atoms (i.e. they are periodic systems), it is not possible to
include all of the atom pairs for constructing the non-bond part of the energy
expression since there is an infinite amount of these terms. In order to decrease
the computational time the amount of non-bond pair terms that are included is
truncated by applying cut-offs. Cerius? has three methods for doing this namely
the “Direct method”, the “Spline method” and the “Ewald method”. The Direct
method calculates non-bond interaction energies for all atom pairs whose members
are closer than some cut-off distance. This method is generally not recommended,
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Figure 3. A set of figures showing the different stages in the modelling of (1,4)-flexynes,
namely the (a) un-cleaned structure (b) cleaned structure (c¢) structure aligned to the
Y Z plane (d) built crystal and (e) the unit cells joined together to form an infinite tessellation

except for small models, for which the cut-off distance should be set to a large
enough value that all interactions are calculated. Similarly, the Spline method
calculates non-bond interaction energies for all atom pairs whose members are
closer than the spline-on distance. The interaction energy is gradually attenuated
(by a spline function) from its full value to zero as atom-atom distances go
from the spline-on to the spline-off distance. The interaction energy is set to
zero for atom-atom distances greater than the spline-off distance. A non-bond
list, where the atom pairs to be considered in the calculation are listed, is used
with the Spline method for faster calculation with most models. However, whilst
the “spline cut-offs” work very well for non-periodic models, it has been shown
that better results for periodic systems (i.e. the systems modelled in this paper)
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can be obtained using the “Ewald Summation” technique [29-31]. In the Ewald
Summation Method the Coulombic interactions and attractive van der Waals
interactions are calculated by the Ewald method [32, 33], while the repulsive van
der Waals interactions (which fade out quickly with distance) are calculated by
the direct method (described previously). A non-bond list must be used with
this method. Since the Ewald summation technique is recommended for periodic
models and preferred over the spline method, in this dissertation we shall be using
this technique for curtailing the non-bond part of the energy expression. (Note
that the Ewald technique cannot be used for non periodic models.)

The energy expression was set up using all parameters, functional forms
and settings as set by default in the DREIDING 2.21 force-field with the exception
of partial charges which were computed using the Charge Equilibration procedure
by Rappe et al. and using the Ewald technique for curtailing the non-bond part
of the energy expression as described. An energy minimisation of the system
was then applied to the system(s). This process involves small adjustments of
the conformation (iterations) in order to lower the energy of the system using
minimisation algorithms (minimisers). In reality, the number of iterations, or
conformation adjustments may range from one to several thousands. Therefore the
time needed to carry out a minimisation depends, amongst other things, on the
size of the system, the type of minimisation algorithm and the energy expression
itself. In Cerius?, the user can choose from a number of available minimisers
based on the steepest descent algorithm, the conjugate gradient algorithm which
was used in this dissertation and more accurate Newton-Raphson methods.
The program also features the “SMART minimiser” which makes use of several
minimisation algorithms which are implemented into the workbench sequentially,
starting from the coarse Steepest Descent minimiser and going down to finer
minimisers such as the Newton-Raphson. This switching is done automatically
as the minimisation proceeds (though the user can pre-select the criteria for
switching) and ensures that iterations at a particular level which do not show any
progress can be discontinued in favour of more fruitful iterations. This minimiser
was used in this paper.

Finally it is important to note that minimisers can only give numerical
solutions and the exact location of the minimum is unlikely to be identified.
Therefore, a set of pre-defined convergence criteria (also known as termination
criteria) have to be used to stop the minimisation once the criteria are satisfied.
These convergence criteria indicate how close the calculation is to the exact
minimum point, and the higher (i.e. stricter) the convergence criteria are, the
longer it will take for these criteria to be satisfied with the benefit that the
simulated minimum would be closer to the true minimum. The most common
method for defining the convergence criteria is to specify the root mean square of
the derivative of the energy expression (RMS force) as being less than a particular
value. Furthermore, a maximum number of iterations is also set, and minimisation
is normally stopped after the earlier of either reaching the convergence criteria or
the maximum number of iterations.
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Table 1. The values of the different termination criteria used by Cerius?

Convergence criteria Moderate | Standard | High
RMS force (kcal mol~!A~1) 0.50000 | 0.10000 | 0.00100
Max force (kcal mol~!A~1) 2.50000 | 0.50000 | 0.00500
Energy difference (Kcal mol~!) 0.00200 0.00100 | 0.00010
RMS displacement (A) 0.01000 0.00300 | 0.00001
Max displacement (A) 0.05000 0.01500 0.00005
Max stress (GPa, only for periodic systems) | 0.50000 0.10000 | 0.00100
RMS stress (GPa, only for periodic systems) | 2.50000 0.50000 | 0.00500

In Cerius?, the user may choose to use (in isolation, or in combination) var-
ious convergence conditions. It also defines default medium and high convergence
criteria (see Table 1).

The minimisations were required to prepare the system for deriving the
single crystalline elastic constants. In such simulations, particularly when using
the second derivative method, it is essential that the energy minimum is properly
identified, and hence high convergence criteria must be used.

It is important to note that to calculate the partial charges of the system
correctly through the charge-equilibration procedure, the partial charges must be
updated as the energy minimisation proceeds, i.e. as the positions of the atoms
are updated along the path to the energy minimum. This is due to the fact that
the computed charges through Rappe’s charge-equilibration procedure depend not
only on the connectivity but also the actual position of the atoms.

In view of all this, the following procedure for setting up the energy
expression and minimisation was used:

1. Loading of DREIDING 2.21 force-field with default settings with the exception
for the method of curtailing the non-bond interactions which was set to the
Ewald technique;

2. Calculation of partial charges using the Charge Equilibration procedure;

3. Short energy minimisation using the SMART minimiser up to the earlier of
200 steps or reaching of the Cerius? default standard convergence criteria;

4. Re-calculation of partial charges using the Charge Equilibration procedure;

5. A second short energy minimisation using the SMART minimiser up to the
earlier of 200 steps or reaching of the Cerius? default standard convergence
criteria;

6. Re-calculation of partial charges using the Charge Equilibration procedure;

7. A third energy minimisation using the SMART minimiser up to the earlier of
5000 steps or reaching of the Cerius? default high convergence criteria;

8. Re-calculation of partial charges using the Charge Equilibration procedure;

9. A fourth and final energy minimisation using the SMART minimiser up to
the earlier of 5000 steps or reaching of the Cerius? default high convergence
criteria;
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10. Saving the model in order to use it in the determination of the mechanical
properties of the system under study (this is explained later on).

These steps were executed through the following script so as to:

a) Minimise human errors where the possibility of the user skipping a step in
a highly repetitive procedure is eliminated;

b) Reduce the computational time taken by Cerius?, by running the calculations
in background mode.

2.3. Calculating the Mechanical (Elastic) Properties

Cerius? provides three automated methods for calculating the mechanical
properties. These are the second derivative method, the constant stress minimi-
sation method and the constant strain minimisation method. Using any of the
three methods, the full 6 x 6 set of elastic constants can be computed from which
one may obtain all the other mechanical properties (the Young’s moduli, shear
moduli and Poisson’s ratios.

The second derivative method calculates the second derivative of the lattice
energy, with respect to the atomic coordinates by performing a single point energy
calculation. It computes a symmetric stiffness matrix, since the elements c;; relate
to the second derivative of the energy expression (with respect to strain, ¢;) as
follows:

1 9’E
CA V ﬁeif)sj
where V' is the volume of the unit cell and F is the energy of the system.

(5)

The constant stress minimisation method calculates the elastic properties
from the strain response to a series of applied external stresses and an empirical
stress-strain relationship is calculated. Cerius? employs an automated method
where the structure is minimised repeatedly (a sweep) with a series of pre-defined
stresses. On the other hand, the constant strain minimisation method carries out
sweeps of minimisations at pre-defined strains as opposed to stresses.

In addition to this, the user may also perform a “manual” constant stress
minimisation where a number of energy minimisations at different values of
applied stress are performed and then the minimised structures at the various
stress are used to study the effect of stress on the system. The user, may for
example, measure the strains from the unit cell vectors and use these to plot
stress-stain plots.

3. Simulation of the structure and on-axis mechanical
properties of (1,4)-flexyne and (1,4)-reflexyne using
the DREIDING force-field
In this section we will use the three automated methods and the “manual

constant stress” method will be used to simulate the properties of the (1,4)-flexyne
and (1,4)-reflexyne networks.
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3.1. Simulations

Simulations were carried out using the commercially available Cerius?
Molecular Modelling software (Accelrys, Version 4.10) running on a Silicon
Graphics Octane2 workstation running the IRIX 6.4 operating system.

The procedure for calculating the elastic constants through the second
derivative method, automated constant strain and automated constant stress
methods were driven through the script file (see Script 1). In this script:

e Lines 5-7 load the force-field and define the non-default force-field settings, i.e.
that the non-bond terms are summed and truncated using the Ewald summation
technique;

e Line 9 starts a for /next loop so that lines 1044 are executed for each of the
structures being considered (in this case, twice: first for (1,4)-flexyne and then
for (1,4)-reflexyne);

e Line 10 loads the initial unminimised structures; line 12 calculates the partial
charges using the Charge Equilibration procedure;

e Lines 14-24 minimise the systems to high convergence criteria using the SMART
minimiser. The minimisation is carried out in such a way that the charges are
updated as the system is optimised (lines 17, 19);

e Line 25 saves the minimised structures;

e Lines 26-43 simulate the mechanical properties of the minimised systems using
the second derivative, automated constant stress and automated constant strain
methods.

Script 1 was then re-run using the conjugate gradient minimisation
algorithm by replacing Line 14 with: MECHANICS/METHOD ”CONJUGATE
GRADIENT”.

Note that in this procedure, for each of the two minimisers used, the
mechanical properties are calculated three times (i.e. six times in total for each
structure). Furthermore, it is important to note that despite the fact that the
program allows the user to control various settings, in most cases, the default
settings were suitable for the simulations. In fact, with the Second derivative
method (lines 26-30), the default settings were used throughout whilst in the
automated Constant Stress/Strain methods (lines 31-36 and 37-43), the only
setting which was altered was the parameter that 11 points would be used for
the calculation of each of the six stress-strain curves!: five in compression, five in
tension and one at zero stress. The default settings were used for the rest of the
options.

1. With these settings, the procedure involves 66 minimisations for each constant stress or
constant strain simulation. The default setting is to use only two points for each stress-strain
curve which, despite being sufficient for plotting a straight line graph, would fail to give an
indication of any errors.
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#Setting directories#
set home ’’/usr/chem/lara05’’
set msi ’’/software/accelrys/cerius2_c410/Cerius2-Resources’’
#Loading ff and assigning of non-default ff settings#
FORCE-FIELD/LOAD_FORCE_FIELD ’’${msi}/FORCE-FIELD/DREIDING2.21""’
FORCE-FIELD/LONG_RANGE_METHOD_VDW EWALD
FORCE-FIELD/LONG_RANGE_METHOD_COULOMB EWALD
#’Foreach’ loop to run script twice, once for each structure#
foreach STR {14F 14R} {
FILES/LOAD
> ${homel}/Chapter3_initial_structures/${STR}_INIT.msi’’
11 #Charge equilibration#
12 CHARGE/CALCULATE
13 #Minimisation using 200 iterations and calculating the charges#
#at the end of each minimisation#
14 MECHANICS/METHOD °°’SMART MINIMISER’’
15 MECHANICS/MAX_ITERATIONS 200
16 MECHANICS/MINIMIZE
17 CHARGE/CALCULATE
18 MECHANICS/MINIMIZE
19 CHARGE/CALCULATE
20 #High convergence minimisation using 5000 iterations#
21 MECHANICS/MAX_ITERATIONS 5000
22 MECHANICS/CONV_LEVEL ’’HIGH CONVERGENCE’’
23 MECHANICS/MINIMIZE
24 MECHANICS/MINIMIZE
25 FILES/SAVE ’’${home}/Chapter3_results/${STR}_min.msi’’
26 #Second Derivative Calculation#
27 MECHPROPS/MINIMIZE_FIRST NO
28 MECHPROPS/ACCUMULATE_AVERAGES NO
29 #Saving the output from the Second Derivative Calculation#
30 MECHPROPS/NAMES_ROOT ’’${home}/CH3/MP_SD_${STR}’’
31 #Constant Stress Calculation#
32 MECHPROPS/CALCULATE
33 MECHPROPS/METHOD ’°’CONST STRESS MIN’’
34 MECHPROPS/STRESS_MIN_NO_POINTS 11
35 #Saving the output from the Constant Stress Calculation#
36 MECHPROPS/NAMES_ROOT ’’${home}/CH3_/MP_CSTRESS_${STR}’’
37 #Constant Strain Calculation#
38 MECHPROPS/CALCULATE
39 MECHPROPS/METHOD ’°’CONST STRAIN MIN’’
40 MECHPROPS/STRAIN_MIN_NO_POINTS 11
41 #Saving the output from the Constant Strain Calculation#
42 MECHPROPS/NAMES_ROOT
> >${home}/Chapter3_initial_structures/MP_CSTRAIN_${STR}’’
43 MECHPROPS/CALCULATE
44}

© 0 N O O WN =

=
o

Script 1. The script which minimises the initial structures and then simulates their
mechanical properties using the Second Derivative, automated Constant Stress and automated
Constant Strain methods
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Finally, we also simulated the mechanical properties in the Y Z plane? using
the “manual constant strain method” where:

(a) tensile /compressive stresses in the range of +5% were applied in the Y- and
the Z-direction in order to be able to obtain the Young’s moduli (E, and
E.), the Poisson’s ratios (v,, and v,,) and shear coupling coefficients (1,
and 7, );

(b) shear stresses in the ZY plane were applied in the range of £0.05GPa at
0.01GPa intervals in order to be able to obtain the shear modulus (G, ) and

the shear coupling coefficients (7)., and 7).
This procedure was also carried out by Script 2. In this script:

e Lines 1-10 load the DREIDING 2.21 force-field as explained in section 3.2.1 (b);

e Lines 11-14 create the folders needed to save the files produced from this
simulation;

e Line 16 loads the system under study (taken from Script 1);

e Lines 18-29 define the stresses and their direction?;

e Lines 30-43 minimise the system under the applied stresses as explained in
section 3.2.1b;

e Line 44 saves the minimised systems under the applied stress in the .msi format.

The files created in line 44 contain the unit shape matrix, from which the
unit cell projections in the X, Y and Z directions can be calculated. In Cerius?,
the unit cell relates to the Cartesian axis by having the cell vector ¢ parallel to
the Z-axis, and b in the Y Z plane. With these constraints, the cell matrix H is
an upper triangular matrix:

hit hiz his
H=1| 0 hy hoy (6)
0 0 hs3

where h;; relate to the unit cell vectors a, b and ¢ through

a=hy1i+hiaj +hizk
b= h22j +h23k5 (7)
C—= h33k

Thus, the projections of the unit cell in the X, Y and Z-directions
respectively are hi1, hos, and hgs.

The unit shape matrix for the system under different loads was then
extracted to a single file. This procedure was also carried out using Script 3.
In this script

2. Since the analysis of the data obtained from this method is fairly time consuming, we
will only simulate the properties in the plane of the structure, i.e. the Y Z plane, which is the
main plane of interest.

3. Note that the systems were found to exhibit different properties in tension and compres-
sion (see discussion). Thus, Line 18 was modified to suit the system being modelled.
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#Setting directories#
set home ’’/usr/chem/lara05’’
set msi ’’/software/accelrys/cerius2_c410/Cerius2-Resources’’
#Running the script for the various load directions and ff#
Foreach FORC {LOAD_Y} {
FORCE-FIELD/LOAD_FORCE_FIELD ’’${msi}/FORCE-FIELD/$DREIDING2.21"’
FORCE-FIELD/LONG_RANGE_METHOD_VDW EWALD
FORCE-FIELD/LONG_RANGE_METHOD_COULOMB EWALD
#Running the script for the various structures under study#
Foreach STR {14F} {
#Setting up the Folders#
12 !'mkdir ${homel}/manual_stress_fin/ DREIDING2.21
13  !'mkdir ${home}/manual_stress_fin/ DREIDING2.21/${STR}
14 'mkdir ${home}/manual_stress_fin/ DREIDING2.21/${STR}/${FORC}
15 #Loading the initial structure#
16 FILES/LOAD

> ${home}/Chapter3_initial_structures/${STR}_INIT.msi’’
17 #Running the script for various loads#
18 Foreach LOAD {{0.00 0.56 1.12 1.68 2.24 2.80}} {
19 #Appling the load in the appropriate direction#

© 00 ~N O O WN =

=
= O

20 If {$FORC == ’’LOAD_Y’’} {

21 MECHANICS/3D_STRESS ’’0°’ ’’${LOAD}’’ ’’0’’> ’°0’’ ’°0’’ 2’07’
22 set direct ’’y’’

23 } elseif {$FORC == ’’LOAD_Z’’} {

24  MECHANICS/3D_STRESS >°0’’ ’’0’° >’>${LOAD}’’ >°0’’ ’’°0’’ ’°0’’
25 set direct ’’z’°

26 } else {$FORC == ’’SHEAR_ZY’’} {

27 MECHANICS/3D_STRESS ’’0’’ °°0°°’ 2’0’2 2 ${LOAD}’’ ’’0’’ ’°0’’
28 set direct ’’zy’’

29 }

30 #Charge equilibration#

31 CHARGE/CALCULATE

32 #Minimisation using 200 iterations and calculating the charges#
#at the end of each minimisation#

33 MECHANICS/METHOD ’’SMART’’

34 MECHANICS/MAX_ITERATIONS 200

35 MECHANICS/MINIMIZE

36 CHARGE/CALCULATE

37 MECHANICS/MINIMIZE

38 CHARGE/CALCULATE

39 #High convergence minimisation using 5000 iterations#

40 MECHANICS/MAX_ITERATIONS 5000

41 MECHANICS/CONV_LEVEL ’’HIGH CONVERGENCE’’

42 MECHANICS/MINIMIZE

43 MECHANICS/MINIMIZE

44  FILES/SAVE °’${home}/manual_stress_fin/DREIDING2.21/${STR}/
${FORC}/${STR} _${LOAD}_${direct}.msi’’

46 1}

Script 2. The script used to simulate the mechanical properties using the ‘manual constant
strain’ method, where LINE 18 defines the loads in the particular direction being studied. This
line is defined according to structure being modelled, the direction of measurement and
whether the loads are in tension or compression
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e Line 1: the script is defined as command shell file;

e Lines 4-9: the loads used in the previous simulation are entered in the variables
sl, s2, ..., s6;

e Lines 10-13: the script is instructed to loop for the various load directions and
structures used in this study;

e Lines 14-24: the variable “direct” is given its appropriate value;

e Line 25: the folder path where the files were saved in the previous simulations
is defined;

e Line 26: a new file named “Res_short.res” is created;

e Lines 27-28: the script is instructed to loop for the various loads applied on the
system under study;

e Lines 29-33: the unit cell projection recorded in the previous simulations are
extracted and saved in the “Res_short.res” created previously.

This data extracted from the unit cell shape matrix of the system under
study at different loads was then plotted as strain-strain and stress-strain plots
and from these plots the Poisson’s ratios, coupling coefficients, Young’s Moduli
and shear modulus in the Y Z plane were calculated.

In particular,

(a) The Poisson’s ratios were obtained from a strain — strain relation since:
Vij =——= (wherei, j =1y, 2)

(b) The coupling coefficients were obtained from a shear strain — tensile strain
relation since:

Niz = ey

=

and Mo = (wherei, j =1y, 2)

€i Vzy
(¢) The Young’s modulus were obtained from a tensile stress — strain relation
since:

E;= 2 (where i =y, 2)

€i

(d) the shear modulus was be obtained from a shear stress — strain relation since:

G.y= T2y (where i =y, 2)
Vzy

Note that together, these properties make up the “full 3 x 3 compliance
sub-matrix” S:

1 —V21 1731 Ey Ey €y

S$11 S12 S13 Ey Ef Gy oy 0z Tay

— _ —Via 1 132 _ £z &z €z
S=|s2u s22 s |=| g E. G |=| o oo 7
s s Sa ms 723 1 Jzy  Dzy  Dzy

31 S32  S33 o romi o, 0. T

which can then be transformed to obtain the off-axis properties.
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1 #!/bin/sh

4 s1=0.05

5 s52=0.04

6 s3=0.03

7 s4=0.02

8 s5=0.01

9 s6=0

10 for FORC in ’’LOAD_Y’’> ’’LOAD_Z’’> ’’SHEAR_ZY’’

11 Do

12 for STR in ’’14F’’ ’’14R’’

13 do

14 if [ $FORC ’’LOAD_Y’’ ] ; then

15 direct = ’’y’’

16 else

17 if [ $FORC ’°LOAD_Z’’ ] ; then

18 direct = ’’z’’

19 else
20 if [ $FORC ’’SHEAR_ZY’’ ] ; then
21 direct = ’’zy’’

22 fi

23 fi

24 fi

25 Pth=/usr/chem/lara05/manual_stress_fin/DREIDING2.21/${STR}/

${FORC}/

26 echo ’’Projections’’ >${pth}RES_short.res

27 for stre in -$s1 -$s2 -$s3 -$s4 -$s5 $s6 $s5 $s4 $s3 $s2 $si1
28 do

29 echo ’’°7 >>${pth}RES_short.res
30 echo ’’${STR}_${stre}_${direct}’’ >>${pth}RES_short.res
31 echo ’’°7 >>${pth}RES_short.res
32 sed -n —e ’’4,6w ${pth}${STR}_${stre}_${direct}.res’’

${pth}${STR}_${stre}_${direct}.msi

33 cat ${pth}${STR}_${stre}_${direct}.res >>${pth}RES_short.res
34 done
35 done
36 Done

Script 3. The script file used to extract the unit shape matrix from the .msi files

3.2. Results and Discusston

It was noted that all minimisations carried out prior to calculation of the
elastic constants were performed to completion and in less than 1 minute (see
Table 2). Also, it was found that the time taken for the different automated? sim-
ulations depended significantly on the method used for simulating the simulation
as detailed in Table 2.

4. Since the “manual constant strain” method is mostly time consuming in the data analysis
stage which has to be done manually by the user, comparison times are presented only for the
automated methods where the results are generated by the programme.
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Table 2. The time taken for the simulations when using (a) the conjugate-gradient
minimiser, and (b) the SMART minimiser

Time taken (minutes, seconds)
(1,4)-flexyne | (1,4)-reflexyne
o . (a) 9s (a) 45s
/] S
Minimisation (lines 13-24) (b) 155 (b) 55
Computation of the mechanical properties though | (a) 1s (a) 1s
second derivative method (lines 27-30) (b) 1s (b) 1s
Computation of the mechanical properties though | (a) 49m 52s | (a) 40m 56s
automated constant stress method (lines 32-36) (b) >2 days* | (b) >2 days™*
Computation of the mechanical properties though | (a) 3m 4s (a) 3m Ts
automated constant strain method (lines 38-43) (b) 9h 43m (b)

* Note that when using the conjugate gradient minimiser all simulations were executed
to completion. However when using the smart minimiser, the automated constant stress
method took a very long time, and was discontinued after 48 hours from its initiation

Table 2 shows very clearly that when comparing the three automated
methods, the Second Derivative method was the fastest followed by the automated
constant strain method which was much slower. This substantial increase in
the computational time is due to the fact that for the constant stress method
and similarly for the constant strain method, the process involved sixty-six
mimisations, i.e. eleven for each of the six independent elements of the stress
vector (three axis stresses and three shear stresses).

In the case of the automated constant stress method, when using the
conjugate gradient minimiser, the simulations were c. 16 times slower than the
automated constant strain method and c¢. 3000 times slower than the second
derivative method. When using the SMART minimiser, the automated constant
strain method took an even longer time to complete (about 350 times more then
when using the conjugate gradient method). Moreover, as stated in Table 2, the
automated constant stress simulations took so long, that after 48 hours they had
to discontinued by the user. The reason for the increase in duration when using the
SMART minimiser is probably that the SMART minimiser makes use of variants
of the Newton-Raphson method which are very computationally intensive [34].

Table 3 and Table 4 show a comparison of the on-axis mechanical properties,
i.e. the three Young’s moduli, the six Poisson’s ratios and the three shear moduli)
with each other and to published data (where available). These results show
very clearly that despite the very big differences in the computational times, the
three automated methods give very comparable results, and that irrespective of
the computational method used, (1,4)-flexyne exhibits positive on-axis Poisson’s
ratios whilst (1,4)-reflexyne exhibits negative on-axis Poisson’s ratios in the Y Z
plane, i.e. the plane of the honeycombs. For example, in the case of (1,4)-flexyne,
all three methods gave results within the range of 0.8540.03 for v, and 0.34+0.02
for v,, whilst in the case of (1,4)-reflexyne, the range for v., was from —0.28+0.02
whilst for v, the range was —0.37 to —0.38. Furthermore, these values were also
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comparable to the ones obtained by Evans et al. [22] and Alderson et al. [23] thus
adding confidence in our modelling methodology.

However, when considering the properties in the other two planes, i.e. the
XY and X Z planes, some of the properties were found to be dependent on the
method used. In an attempt to understand more clearly the reason behind these
deviations, we analysed the data which is stored by Cerius? when computing
the mechanical properties. In particular, we analysed the data used in generating
the stress-strain curves, the gradients of which are used in the computation of
the elements of the stiffness /compliance matrices. This data showed that in the
cases when the deviations where considerable, the data was very scattered. This
was very evident, for example, in the data used for calculating the ‘12’ and ‘13’
elements of the elements which are required for the Poisson’s ratios v, and v,
two properties which show considerable deviations, (see Figure 7(a) and (b))
when compared to the data used for calculating the ‘11’ element which is used for
calculating E, which shows little deviations (see Figure 7c¢).

An explanation for this “scatter” in the data relating to the XY and XZ
planes (when compared to the XY plane) can be derived by noting the structure of
the models. The flexynes /reflexynes are essentially 2D covalent networks aligned
in the Y Z plane) which are “loosely” connected together through much weaker
non-bond interactions (7, similar to the interactions holding parallel graphite
layers together). This type of bonding results in systems which are “well defined”
in the YZ plane (hence the “lack of scatter” in the data relating to this plane),
but which can adopt various “equally good” conformations in the other planes
(hence the “scatter”). Evidence for this type of bonding can be found from the
facts that:

This weaker bonding which holds together the different layers is also
reflected by the fact that the Young’s modulus in the X direction is significantly
lower than that in the other two directions (E, is an order of magnitude lower
then the other two on-axis moduli) and that the shear moduli G, and G, are
close to zero, indicating that the different layers can easily “slip” past each other.

It is also important to note that even in the Y Z plane, the moduli are such
that the shear on-axis modulus is around 30 times lower than the on-axis Young’s
moduli. This is a very important consideration since it shows that in reality, these
materials are expected to be very weak in shear, a property which will reduce the
material’s suitability for many practical applications:

e the separation between the layers is ¢. 3.6 A, typical of graphite like-systems;

e phenyl rings from adjacent layers are stacked “off-centre” from each other as
illustrated in Figure 8, a stacking arrangement which is typical of systems
exhibiting m—r interactions.

These differences in the moduli (e.g. the anisotropy between the three
Young’s moduli) highlight one of the main weaknesses of the automated constant
stress method over the other methods. It is regrettable, that as illustrated in
Figure 9, the user of Cerius? can only define the number of points per sweep and
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Figure 6. The plots obtained for the shear modulus from the shear stress-shear strain plots

in the ZY plane for (1,4)-flexyne (a) and for (1,4)-reflexyne (b) using the conjugate gradient
method, where m is the gradient of the plot

the range of stresses (i.e. the initial and final stresses). This information is used
for all six sweeps, irrespective of the Young’s modulus and shear modulus of the
system in the direction of loading.

This procedure can result in problems since:

e when the applied stress is too large, the system may deform past linear “stress
and strain”, a problem which could be amplified if the interactions “holding
the material together” is of a non-covalent nature;

e when the applied stress is too small, the system will experience very little
change (the stresses would be too small to be “felt” by the system) and any
differences in the projections recorded can be mainly attributed to the different
“minimisation paths”.

In fact, in an ideal scenario, it is desirable the loads used in the simulations
are such that they are around 0.5-5% of the moduli® in the respective plane. This

5. In some cases, it may be possible to use lower values provided that the stresses are “felt”
by the system and a linear relationship is obtained for a stress—strain graph.



262 L. Trapani, R. Gatt, L. Mizzi and J. N. Grima

0.1 +

) O
o
=)
S
A

stress XX (GPa
o

> —0.05

+

'y

—0.01 —0.005 0 0.005 0.01 0.015
strain XX

—
) =
=
<
o (e}
at —
L
H

stress XX (GPa
o

» —0.05

—4 -3 -2 —1 0
strain Y'Y’ x10~%

—
) o
N>
o
o o
t —
L
o

stress XX (GPa
o
+

—0.05

.

0 1 2 3 4
strain ZZ x10~4

Figure 7. Stress—Strain relationships as obtained from Cerius? automated constant stress
method, highlighting the fact that for the plots (b) 0 /e, (equivalent to v91) and (c) 05 /e.
(equivalent to v31) a non-linear relationship is obtained, as opposed to (a) o, /e,

problem, (i.e. that a particular magnitude of stress could be too large for loading
in one direction but too small for loading in another direction), can be overcome if
the constant strain method is run “manually” by the user (the “manual constant
stress method”), since in this case, the user has complete control over each value
of stress applied.
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Figure 8. The conformation adopted by the phenyl rings in (a) (1,4)-flexyne
and (b) (1,4)-reflexyne

Constant Stress Minimization Prefs

Sweep defaults

MNumber of points per sweep
—0.100 | Tnitial stress (GFPa) 0,100 Final stress (GFa)

Stress components which vary during sweep

XX ki ZZ ¥Z XZ =y
1 [ -.1000 | A
a | -0 0B00 |
3 |—n.uann | —

|E| Flot stress profile |:| Use only one customized sweep

Figure 9. The user defined options for the automated constant stress method in Cerius?.

This complete control over the stresses that can be applied, proved to be
a very useful property in the modelling of our systems. This is because at “larger”
stresses in compressive on-axis loading (e.g. larger than 2% of Young’s modulus),
the structure deformed beyond recognition (“imploded”), particularly for loading
in the Z-direction. This made it necessary to use a different set of stresses for
tension than that used in compression. Furthermore, we found that there are
significant differences in the results of the mechanical properties if we consider the
data “in tension” or “in compression” exclusively. In fact, one may observe that
the data obtained by the “automated methods” give an average of the “tension” /
“compression” behaviour of these materials.

An explanation for this different behaviour in tension and compression could
be due to the fact that in compression in the Z-direction at stresses which are
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higher then the critical buckling load® for the vertical ribs, will result in buckling
of these ribs, something which would not occur in tension. Furthermore, it is also
possible that this effect is due to the fact that these systems cannot be treated
as “simple mechanical systems” since at these scales of structure, the non-bond
interactions, which are different in tension and compression, play a significant role
in determining the properties of these systems.

Nevertheless, despite the differences identified here, it should be noted that
when one considers the fact that:

e irrespective of the method used, the differences in the simulated properties, are
within +£5%, i.e. typical of the accuracy normally associated with any force-field
based study;

e the time taken for the second derivative method to compute the full set of 6 x 6
elastic constants is significantly lower than that required for any of the other
processes;

one may conclude that the second derivate method gives the best results in
terms of “quality /time” considerations.

3.3. Conclusion

From this section we have found that:

(1) We can reproduce the published data for (1,4)-flexyne and (1,4)-refleyne. This
is very important as it will ensure that our methodology conforms to that
used by other workers. We have confirmed that the re-entrant (1,4)-reflexyne
exhibits auxetic behaviour;

(2) We have identified that ideally, due to the fact that there are differences in the
values of the mechanical properties if one only analyses the data “in tension”
or only “in compression”, for optimal quality of the simulated results, one
should use a manual constant stress method so as to have complete control

on the simulation;

(3) Since the differences between the different methods are within the accuracy
expected for force-field based simulations, one may conclude that the second
derivate method gives the best results in terms of ‘quality /time” considera-
tions;

(4) We have found that these materials have a very practical limitation since
they have a very low shear modulus. This makes these materials vulnerable
to shear.

6. The “critical load” is the maximum load, which causes a “column” to be in a state of
unstable equilibrium, that is, any increase in the loads or the introduction of the slightest lateral
force will cause the “column” to fail by buckling.
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4. Simulation of the structure and on-axis mechanical
properties of other (n,m)-flexyne and (n,m)-reflexyne
using the DREIDING force-field

In the previous section, we have simulated the on-axis properties of (1,4)-
flexyne and (1,4)-reflexyne networks using the DREIDING force-field and showed
that (1,4)-flexyne and (1,4)-reflexyne exhibit positive and negative on-axis Pois-
son’s ratios respectively. Here we will extend this study in order to study the
effect of increasing /decreasing the size of the vertical and/or lateral branches
of the flexyne /reflexyne systems. In particular we will simulate the properties of
(1,2)-, (1,6)-, (2,2)-, (2,4)- and (2,6)-flexynes and (1,5)-, (1,6)-, (2,5)-, (2,6)- and
(2,8)-reflexynes using the DREIDING force-field.

4.1. Simulations

The methodology used in this chapter was similar to the one used in
previous section (Script 1). The only two differences were that a number of new
structures were introduced in line 9, whilst lines 31 to 43 were deleted since
only the second derivative method was employed. In this section, the mechanical
properties were measured using only the second derivative method since this

method was found to give the best quality /time ratio for these organic systems’.

4.2. Results and Discussion

The minimised conformations of (n,m)-flexyne and (n,m)-reflexyne as
obtained from the DREIDING force-field are shown in Figure 10 and Figure 11
respectively. The on-axis mechanical properties are shown in Table 5 and Table 6
whilst Figure 12 show a comparison of the mechanical properties of (n,m)-flexyne
and (n,m)-reflexyne.

Table 5 and Table 6 show that our simulated results are comparable with the
ones in the literature. This is very significant as it confirms that our methodology
is comparable to the one published in the literature. We also attempted to relate
the simulated mechanical properties to the geometry of the models.

The projection of the models in the YZ plane is shown in Figure 10.
This shows that for the (n,m)-flexynes investigated in this study, the use of
the DREIDING force-field results in minimum energy structures with “straight”
acetylene chains. On the other hand, one may note, as highlighted in Figure 11
that in the case of (n,m)-reflexynes the vertical chains are not always straight
and they tend to start “bending” in the vertical direction as the size of the
acetylene links joining the phenyl rings increases. This effect is more evident
for (2,n)-reflexynes than for (1,n)-reflexynes. Moreover, one may note that unlike
the flexynes, the reflexynes are not perfectly planar in the third direction (see
Figure 13 (a) and (b)).

7. As noted above, there are differences in the results of the mechanical properties if one
only analyses the data “in tension” or only “in compression”. However, since these differences
are not too large, and because of time constrains, the second derivative method was employed.
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Figure 12. Plots representing the “trends” obtained in the moduli and Poisson’s ratios when
comparing the different (n,m)-flexynes
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Poisson’s ratios when comparing the different (n,m)-reflexynes

All this may be explained through the fact that, referring to Figure 13,

phenyl rings B and E are much closer to each other in the reflexynes when

compared to the flexynes. In fact, in the reflexynes the phenyl rings seem to

be interacting, perhaps attempting to overlap on each other so as to maximise

the 77 interactions. The extent of these interactions is dependent on the size of

the acetylene bonds as follows:
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e If the size of the diagonal acetylene chains is increased, phenyl rings B and E
will move towards each other, thus increasing this interaction;

e If the size of the vertical acetylene chains is increased, phenyl rings B and E
will move away from each other, thus decreasing this phenyl-phenyl interaction.
However, the longer the acetylene chain is, the more flexible it becomes which
in turn, results in bending of the chains.

This is not the case in the flexynes, since increasing the diagonal or vertical
acetylene chain size results in phenyl rings B and E moving away from each other,
maintaining the planar shape of the systems.

The “ease of bending” of the acetylene chains may also be explained from
a mechanical point of view in terms of the shear modulus in the Y Z plane which
is found to decrease when the size of either the vertical or diagonal acetylene
branches is increased, indicating that the structure under study will be more
prone to a change in shape. This decrease in the shear modulus upon increasing
the size of the acetylene chains is probably primarily due to a decrease in the
density of the whole system.

When comparing the mechanical properties of different (n,m)-flexynes, it
is clear that:

e All systems exhibit positive Poisson’s ratios
e Clear trends can be identified to describe the variation of the mechanical
properties with the size of the acetylene chains and:

— In the case of the Young’s moduli there is a clear increase in the Z-direction
and a decrease in the Y-direction i.e. as the size of the acetylene chains
increases both in the vertical and diagonal branches, the system will become
“harder” in the vertical direction but “softer” in the horizontal direction;

— In the case of the Poisson’s ratios, although the systems always retain
a positive value, when the size of the vertical and /or diagonal acetylene
branches is increased, the Poisson’s ratio will become more positive for
loading in the Z-direction but less positive for loading in the Y-direction;

— The shear modulus decreases as the size of the acetylene chains increases
both in the vertical and diagonal branches

Similar trends (for the Young’s moduli and Poisson’s ratios) were also found
in the published data thus further confirming that our methodology is comparable
to the one used by other workers.

The change in Poisson’s ratios may be explained by the different mech-
anisms which may be acting upon the (n,m)-flexynes. In fact, a conventional
honeycomb may deform from either of three mechanisms, namely, hinging, flexing
and dilation. For an idealised honeycomb, the former two mechanisms will result
in a positive Poisson’s ratio, whist the latter mechanism results in negative Pois-
son’s ratios. In organic systems, such the ones being investigated here, one would
expect to find these three mechanisms acting concurrently and the Poisson’s ratio
would then be expected to depend on the “major” deformation mechanism.
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Figure 13. The positions of the phenyl rings in the third direction in (a) (2,6)-flexyne and
(b) (2,6)-reflexyne. (c) A schematic diagram showing the relative positions of the phenyl rings
in flexynes and reflexynes

When considering the (n,m)-reflexynes systems, it is evident from Figure 12
that:

e All reflexyne systems exhibit negative Poisson’s ratios;
e There is no clear trend in the variation of mechanical properties with the length
of the acetylene chains can be made was the case for the flexynes.

In fact, the only conclusion that one may draw is that all reflexynes
investigated in this study exhibit a negative Poisson’s ratio. Similar results (for
the Young’s moduli and Poisson’s ratios) were also found in the published data.
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Furthermore, the results confirm that for all systems modelled, the moduli
are such that the shear on-axis modulus in the Y Z is extremely low (around
30 times lower than the on-axis Young’s moduli). As stated before, this results,
which is being reported for the first time, is a very important consideration
since it shows that in reality, these materials are expected to be very weak in
shear, a property which will reduce the material’s suitability for many practical
applications. Moreover, the reflexynes always exhibit a lower shear modulus then
the flexynes, which as noted above may explained by the fact that “bending” of
the acetylene chains is observed in the reflexynes but not in the flexynes.

It is also interesting to note that when comparing the (n,m)-flexynes with
the (n,m)-reflexynes one may note that in most cases, the flexynes exhibit a higher
in-plane on-axis Young’s modulus than the reflexynes. Furthermore, (i) the in-
plane on-axis Young’s moduli and shear modulus are much higher then the
Young’s modulus in the third direction or non Y Z-shear moduli, a property which
was explained in detail for the (1,4) systems and which apply for all (n,m) systems.

4.3. Conclusion

The results from these simulations clearly suggest that:

e The methodology we are using is comparable to the one used by other workers
and published in the literature and the results obtained are very similar;

e As in the case of the published data, for all the flexyne/reflexyne systems
modelled, our DREIDING force-field simulations always predict auxetic on-axis
behaviour for the reflexynes and conventional on-axis behaviour in the case of
the flexynes;

e Clear trends may be identified to describe how the mechanical properties of
the flexynes depend on the number of triple bonds in acetylene chains. No such
trends could be identified in the case of the reflexynes;

e In all cases, the shear on-axis modulus in the Y Z is extremely low (around 30
times lower than the on-axis Young’s moduli). As stated before, this finding,
which is being reported for the first time, is a very important consideration
since it shows that in reality, these materials are expected to be very weak in
shear, a property which will reduce the material’s suitability for many practical
applications.

5. The on-axis mechanical properties of 2D flexyne and
reflexyne polyphenylacetylene networks: An investigation
on the dependency of the simulated on-axis properties
on the force-field used®

In the previous sections we showed that we can successfully reproduce the
simulations reported in the literature by Evans [22] and Alderson [23]. In view of

8. Simulations on reflexynes using the PCFF force-field have already been reported in
another publication [24] and are included here only for the sake of completeness.
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all this, in this chapter we shall use the same method (albeit slightly modified)
in order to re-simulate the properties of (1,4)-flexyne and (1,4)-reflexyne using
various force-fields in an attempt to investigate the dependency, if any, of the
simulated mechanical properties on the force-field used. Apart from the DREIDING
force-field, which was used in the previous chapter, (as part of the validation
study), the force-fields which were chosen for this part of the dissertation were
the COMPASS [35, 36], CVFF 300 [37], UNIVERSAL [28] and PCFF [38] force-fields.
These force-fields were chosen since they are parameterised to deal with organic
systems.

This investigation will be carried out on all the flexynes and reflexynes,
i.e. (1,2)-, (1,4)-, (1,6)-, (2,2)-, (2,4)- and (2,6)-flexynes and (1,4)-, (1,5)-, (1,6)-,
(2,5)-, (2,6)- and (2,8)-reflexynes.

5.1. Simulations

The methodology used in this chapter was similar to the one employed in
the previous chapter, Script 1. The only two differences were that a “for each”
loop was introduced between lines 4 and 5 in order to repeat the script for all the
force-fields used in this study, whilst lines 31 to 43 were deleted since only the
second derivative method was employed.

5.2. Results and Discussion

All the simulations were completed successfully and the simulated values of
the Young’s moduli, Poisson’s ratios and Shear moduli for (1,4)-flexyne and (1,4)-
reflexyne by the various force-fields used in this study are shown in Table 7. The
(n,m)-flexynes and (n,m)-reflexynes investigated in this study also showed a good
correlation to the results? published by Evans [22] and Alderson [23], a summary
of which is being reported graphically (see Figure 14).

These results clearly indicate that although the actual values of the simu-
lated properties are force-field dependent, the general trends in the results as iden-
tified in the previous chapter are force-field independent for a given system. For
example, Figure 14 and Figure 15 show that for (1,4)-flexyne and (1,4)-reflexyne
the mechanical properties obtained through all force-fields used in this study yield
similar results, and similarly for the other systems.

In particular we note that:

e Irrespective of the force-field used, all reflexynes are predicted to exhibit auxetic
on-axis behaviour in the Y Z plane whilst all flexynes with all force-fields are
predicted to be conventional on-axis in the Y Z plane;

e Irrespective of the force-field used, all the (n,m)-flexyne and (n,m)-reflexyne
have:

— I, is considerably lower than E, and E,. As stated in the previous chapter,
this may be explained in terms of the bonding where in the Y Z plane the
flexynes /reflexynes are bonded together through strong covalent bonds while

9. These are reported in the Supplementary information in electronic format
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Figure 14. Plots showing the absolute values for (a) Young’s moduli, (b) Poisson’s ratios and
(c) shear moduli for (1,4)-flexyne as simulated by different force-fields

in the XZ and XY planes they are “loosely” connected together through
much weaker non-bond interactions;

— The relative magnitudes of E, : E, remain fairly constant (see Figure 14
and Figure 15 which illustrate this very clearly for (1,4)-flexyne and (1,4)-
reflexyne);

Very low shear moduli in all planes with:
(a) A shear modulus very close to zero in the non Y Z plane meaning that

there is very little resistance for the layers to slip past each other. As
in the case of the Young’s moduli, this behaviour may be explained in
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(c) shear moduli for (1,4)-reflexyne as simulated by different force-fields

terms of the type of bonding present in the different planes i.e. the strong
covalent bonding in the Y Z plane and the weak non-bond interactions in
the XY and XZ planes. In fact, one would expect that these graphite-
like systems offer no resistance to shearing in the latter two planes as the
“infinite” layers making up these system would slide over each other;

A low (but finite) shear modulus in the Y Z plane (when compared to
the on-axis Young’s modulus) indicating that these networks will shear
very easily. This is much more pronounced in the reflexynes than in the

flexynes.
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Figure 18. Plots showing the absolute values of G, (n,m)-flexynes (a) and (n,m)-reflexynes
(b) as simulated by the different force-fields

e The trends describing the variation of the mechanical properties with the length
of the acetylene chains as identified in the previous chapter with the DREIDING
force-field remain could also be found with all the other force-fields, i.e.:

— the Young’s moduli in the Z-direction increase whilst those in the Y-direction
decrease;

— the Poisson’s ratios are always positive however, an increase in the size of
the vertical and/or diagonal acetylene branches causes the Poisson’s ratio
to become more positive for loading in the Z-direction but less positive for
loading in the Y-direction;

— the in-plane shear modulus decreases as the size of the acetylene chains is
increased.

5.3. Conclusion

The simulations in this section suggest that despite the fact that the exact
magnitudes of the mechanical properties are dependent of the force-field, the
general properties of the flexyne and reflexyne systems identified in Chapters 3
and 4 using the DREIDING force-field were not artefacts of the simulations thus
adding confidence in the earlier results.
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6. The off-axis mechanical properties of 2D flexyne and
reflexyne polyphenylacetylene networks

In the previous chapter we showed through force-field based simulations
that irrespective of the force-field used, reflexyne networks exhibit on-axis negative
Poisson’s ratios, (i.e. auxetic behaviour), the exact magnitude of which depends
on the number of triple bonds in the acetylene chains, the force-field used, and even
(although to a smaller extent), on the method used to simulate the mechanical
properties (e.g. manual constant stress vs. second derivative method). It was
also very interesting to note that in some cases, the extent of auxeticity was
very high, for example in the case of (1,4)-reflexyne, the COMPASS force-field
predicted Poisson’s ratios v,, = —0.52 (The flexyne systems exhibit positive on-
axis Poisson’s ratios the exact magnitude of which depends on the number of
triple bonds in the acetylene chains and the force-field used.)

However, in this investigation (and all other investigations reported in the
literature), only the on-axis mechanical properties were measured.

In this section we investigate the off-axis mechanical properties, in particu-
lar, the off-axis mechanical properties in the Y Z-plane (the plane of the networks)
since no reference has been made to these properties as of yet.

6.1. Theory

The standard procedure to obtain the off-axes profiles for mechanical
properties for a full rotation around the X-axis one may make use of the 6 x 6
stiffness matrices C' = [¢y,y], or rather, its parent, the fourth rank stiffness tensor.
This 3 x 3 x 3 x 3 fourth rank stiffness tensor c;;x; with stiffness tensorial terms
cijir (i, J, k, 1€ {1, 2, 3}) relates to terms ¢, (M, n€{1,2,...,6}), the elements
of the 6 x 6 stiffness matrix in such a way that the stiffness tensorial terms c;;u;
(i, 7, k, 1€{1,2,3}) may be written in terms of ¢, (m, n€{1,2,...,6}) through
replacing pairs of suffixes in ¢;;z; by single suffixes according to the following rule:

suffix pair in ¢;;jx; (i.e. ij or ki) 11 22 33 | 23,32 | 31,13 | 12,21
single suffix in ¢,y 1 2 3 4 5 6

Thus for example, c11 = c1111, €14 = C1123 = C1132, C45 = C2331 = C2313 =
C3231 — C3213 and so on.

Having obtained the the fourth rank stiffness tensor c;;,; describing the
mechanical properties in the original orthogonal co-ordinate system Owxq23, this
is transformed to c¢;j/xr which describes the properties in a new orthogonal co-
ordinate system Oxf,3, where Ox/44 is obtained from Owx23 through a simple
rotation by an angle ¢’ around the Oz, direction. This transformation is carried
out using the tensor transformation rule:

Citg/ k17 = Qi Qg7 Ak LA 1 Cijkl (Za ja ka la i/a j/a kl? l/ € {15 27 3}) (8)
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where a;/;, ajij, apr and apy (4, 7, k, 1,4, §7, k', " € {1, 2, 3}) are the elements of
the transformation matrix:
1 0 0
0 cos(s) sin(c) (9)
0 —sin(s) cos(s)
The “transformed” Poisson’s ratio v4; may be obtained from cirjriry by re-
obtaining the transformed 6 x 6 stiffness matrix C’, inverting it to obtain the
transformed 6 x 6 compliance matrix S’ from which the Poisson’s ratio v4; may
be obtained from: )
Vg = — z/ﬁ (10)
22
Alternatively, to avoid the inversion, one may transform the compliance
matrix (or rather its parent the 4th rank compliance tensor), although in this
case, care must be taken as sometimes the transformation the terms of compliance
matrix to the terms of the compliance 4th rank tensor involve factors of 2 or 4.
However, in our study we are primarily interested a sub-section of the full
6 x 6 stiffness and compliance matrices, namely the 3 x 3 sub-matrix, which relate
solely to Y and Z directions. These 3 x 3 stiffness and compliance “sub-matrices”
relate stress to strain for a 2D system in the Y Z plane and are defined through:

Oy Ca2  C23 Ca4 Ey Ey S22 S23  S24 Oy
Oz | = | €32 (€33 C34 €z & €z | = | S32 833 S34 (op”
Tyz Cq2  C43 Ca4 Vyz Vyz 542 543  S44 Tyz

where the terms c;; and s;; in the 3 x 3 matrices refer to the respective terms in the
original 6 x 6 matrices. In such cases, the parent 4th rank tensor is 2 x 2 x 2 x 2
and, for example, compliance tensor s;ji (7, j, k, [ € {1, 2}) relate to the sub-
matrix § above through:

51111 = S22 51122 = S23
$2211 = §32 $2222 = 8§33
251211 = 252111 = 542 251922 = 259122 = 543

281112 = 251121 = S24

289212 = 282221 = S34

4ds1012 = 481221 = 452112 = 482121 = 544
and in this case, the transformation is carried out using the tensor transformation
rule:

Sit el = Gt i Qg1 Ot QYL Skl (4,9, k, 1,i', 5" K 1 e {1, 2})
where a;;, ajj, apr and apg (4, 4, k, 1,7, §', k', U € {1, 2}) are the elements of

the transformation matrix:
cos(s)  sin(c)
—sin(s) cos(s)

6.2. Results and Discussion

The method used to obtain the off-axis plots will be used to transform the
3 x 3 compliance sub-matrix which was calculated through the simulations in the



284 L. Trapani, R. Gatt, L. Mizzi and J. N. Grima

previous chapters for the various (n,m)-flexyne and (n,m)-reflexyne using various
force-fields.

In the case on (n,m)=(1,4) we calculated the off-axis Poisson’s ratio and
moduli from the compliance data (s;;) simulated an reported in Chapter 3-410,
Plots of these properties against ¢ are given in Table 8 and Table 9.

These plots clearly show some very interesting features namely that:

1. Despite various difference in the actual values of the on-axis properties, the
profiles of the off-axis properties (i.e. the shapes of the off-axis plots) are
virtually identical;

2. The Poisson’s ratios are highly dependent on the direction of loading and:

(a) In the case of (1,4)-reflexyne, auxeticity is only observed for loading on-
axis or in directions very close to it. In fact, these plots suggest that when
(1,4)-reflexyne is loaded in the Y Z plane at more than ¢. 10deg on-axis, the
in-plane Poisson’s ratios becomes positive reaching a maximum positive for
loading at c. 45deg off-axis. This is very significant as it suggests that if
synthesised, (1,4)-reflexyne will only be auxetic for loading in certain very
specific directions;

(b) In the case of (1,4)-flexyne, the Poisson’s ratios will also become more
positive reaching a maximum at c¢. 45deg off-axis. However, in this case,
the maximum positive Poisson’s ratio is always less than the maximum
positive Poisson’s ratios in (1,4)-reflexyne.

3. The moduli are such that for both (1,4)-flexyne and (1,4)-reflexyne, maximum
Young’s moduli are exhibited for loading on-axis whilst maximum shear moduli
are exhibited for loading at 45deg off-axis.

It was also interesting to note that in the cases when the on-axis data
in tension and compression were different, the off-axis plots were such that the
tension / compression plots were slightly non-symmetric where “average of these
plots” results in a symmetric plot of a shape similar to the plots obtained from
data obtained using methods such as the second derivative method. This is very
significant as it confirms the conclusion made in Chapters 3 and 4 that the second
derivative method offers the best “quality of results : simulation time” ratio,
and that in fact, to a first approximation, the data obtained using this method
described the behaviour of the material in both tension and compression.

We also simulated the off-axis plots of the other (n,m)-flexyne /reflexyne
systems using the second derivative data obtained in Chapter 3 & 4 and the
off-axis Poisson’s ratios plots are given in Figure 19 and Figure 20.

These off-axis Poisson’s ratios in Figure 19 and Figure 20 show some very
interesting features:

10. The data in Chapters 3and 4 was obtained using the DREIDING force-field through
various methods (second derivative, automated constant strain, manual constant stress, etc.)
whilst the data in Chapter 5 was obtained using various force-fields (CVFF, Universal, PCFF
and COMPASS) using the second derivative method.
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Table 8. Plots showing the v, for (1,4)-flexyne and (1,4)-reflexyne

(1,4)-flexyne v, (1,4)-reflexyne v,
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Table 8 — continued. Plots showing the v, for (1,4)-flexyne and (1,4)-reflexyne
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Table 9. A graph for E, (black) and G.,, (gray) for (1,4)-flexyne and (1,4)-reflexyne

(1,4)-flexyne vy,
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Table 9 — continued. A graph for

(1,4)-reflexyne
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Figure 19. Off-axis plots for the v,. (a) (1,2)- (b) (1,4)- (c) (1,6)- flexyne

First (and most significantly), the plots show that the absence of auxeticity
in the Y X plane for loading off-axis is a common feature of all the reflexynes.
In fact, irrespective of the reflexyne system or force-field used, auxeticity is only
exhibited for loading on axis or in directions £ ¢. 10deg to it. Otherwise, the
reflexynes exhibit positive Poisson’s ratios, which in most cases approaches —1
when loading at c¢. 45deg off-axis. This is very significant as it clearly shows that
the potential of these systems as auxetics for use in practical applications is very
limited.

The plots also show that (2,2)-flexyne exhibits (nearly) in-plane isotropy,
i.e. the Poisson’s ratio is independent of the direction of loading. This prop-
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Figure 19 — continued. Off-axis plots for the v,. (d) (2,2)- (e) (2,4)- (f) (2,6)- flexyne

erty is the direct result of the symmetry of (2,2)-flexyne (hexagonal). Regret-
tably, the Poisson’s ratio of this system is positive, as expected. The other
flexynes exhibit positive in-plane Poisson’s ratios for loading in any direction
in plane.

6.3. Conclusions

The in-plane properties of the flexyne and reflexyne systems are very
dependent on the direction of loading. Most importantly, these calculations show
that the predicted in-plane on-axis auxeticity is lost when the reflexynes are loaded
off-axis.
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Figure 20. Off-axis plots for the v, (a) (1,4)- (b) (1,5)- (c) (1,6)- reflexyne

7. Final Conclusions and Further Research

The main scope of the paper was to make use of empirical modelling

techniques in order to derive the full set of mechanical properties of the periodic

2D polyphenylacetylene networks known as flexyne and reflexyne. In particular
we attempted to:

e confirm the results obtained from previous studies, which suggested that (n,m)-
flexynes exhibit a positive Poisson’s ratio on axis (i.e. conventional) whilst
(n,m)-reflexynes exhibit a negative Poisson’s ratio on axis (i.e. auxetic);
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Figure 20 — continued. Off-axis plots for the v,. (d) (2,5)- (e) (2,6)- (f) (2,8)- reflexyne

e analyse behaviour of these networks when subjected to shear loads
e analyse the off-axis mechanical properties, particularly the in-plane off-axis
Poisson’s ratios.

In fact, the first part of the present study was meant to be a validation of
our methodology on (1,4)-flexyne and (1,4)-reflexyne and this was accomplished
by following a similar methodology employed in the past studies [22, 23] i.e. the
DREIDING force-field was used. However, our methodology deviated slightly from
the other methods with the inclusion of partial charges on each atom (using
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Charge Equilibration) and by using various suitable methods for calculating
the mechanical properties. From the results obtained, which were similar to the
published results, we concluded that in accordance with previous results, the re-
entrant (1,4)-reflexyne 2D polyphenylacetylene network is indeed auxetic on-axis
whilst (1,4)-flexyne was conventional. We also found that the magnitudes of the
simulated on-axis Young’ moduli and Poisson’s ratios were comparable to those
published in the literature. However, we also identified small differences in the
actual values of the mechanical properties which were found to be dependent on
the method used, and more importantly, dependent on whether the system was
analysed in “tension” or in “compression”. In view of this, we found that for
optimal quality it would be best to use a manual constant stress method rather
than an automated one. However, since this method was very time consuming and
the differences in the results as obtained from the different methods were relatively
low, we further concluded that the “Second Derivative Method” (a method where
results were found to be close to the average of the tension /compression data)
is the method which gives the best “results:simulation time” ratio. Thus, this
method was used in all subsequent studies performed in this dissertation.

We then simulated the properties of other (n,m)-flexynes /reflexynes using
the DREIDING force-field and, in analogy to published work, we identified that
all the reflexynes exhibited on-axis auxetic behaviour in the Y Z plane whilst
the flexynes exhibited on-axis conventional behaviour. Furthermore, we identified
clear trends which describe a relationship between the mechanical properties and
the number of triple bonds in acetylene chains for flexynes. No such trends could
be identified for the reflexynes, once again, in analogy to previous work. This
comparability with previous work was very important not only because it validates
our modelling methodology, but also because it ensures that any new data derived
for these systems will fit well with the existing published data.

We also found that the Young modulus (E,) is considerably lower than E,
and F,. for all flexynes and reflexynes studied using any force-field. This may be
attributed to the fact that the particle interactions are mainly of the non-bond
type (i.e. weak) in the XZ and XY planes while the Y Z plane is dominated by
strong covalent bonds.

Finally, we also reported for the first time values for the shear moduli
which we have found to be very low (at least an order of magnitude lower than
the Young’s moduli). This discovery is of great importance as it highlights a very
dominant limitation for these materials in practical applications.

We also extended our study to determine whether the results obtained with
the DREIDING force-field were force-dependent or independent, a study which
is very important when studying novel materials where no experimental data is
available for comparison with the simulations. In this study we used the CVFF300,
COMPASS, PCFF and UNIVERSAL force-fields, four force-fields which like the
DREIDING force-field are adequately parameterised to model systems with phenyl
rings and acetylene chains. In this study we found that despite minor differences
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in actual values of the simulated mechanical properties when obtained by different
force-fields, the general trends identified by the study using the DREIDING force-
field were still evident thus suggesting force-field independence of our results. For
example, all the force-fields used suggest that reflexynes are auxetic on-axis in
the YZ plane whilst the flexynes are conventional on axis. Another interesting
conclusion that we draw regarding the Young’s modulus is that for each structure,
irrespective of the force-field used, the ratio of the simulated F,: E. appears to
remain fairly constant. Low (and sometimes almost negligible) shear moduli were
reported using all force-fields. Finally, all force-fields suggest that in the case of
the (n,m)-flexynes the Poisson’s ratio become less positive for loading in the Y-
direction upon increasing the size of the vertical /diagonal acetylene branches.
This is accompanied by an increase in the Poisson’s ratio for loading in the
Z-direction and a decrease in the in-plane shear modulus. The results for the
reflexynes did not exhibit a consistent trend and as such no reliable conclusions
could be drawn.

The final part of the paper involved a study of the off-axis behaviour of the
flexynes and reflexynes. This is “new ground” in the study of these systems since,
although numerous publications have emerged on the subject in the last few years,
as of yet no reference has been made to these off-axis mechanical properties. From
our results we concluded that in general (with the expectation of (2,2)-flexyne
which exhibits hexagonal symmetry), the mechanical properties, including the
Poisson’s ratios are highly dependent on the directions of loading. We found that
the Poisson’s ratios are always positive in the case of the flexynes, although on
axis the Poisson’s ratio is at its lowest. In the case of the reflexynes, we found
that although all the systems modelled were auxetic in the Y Z-plane on-axis,
this auxeticity is lost when loading off-axis. In fact, we found that there are very
narrow regions where auxeticity is present. We also found that profiles of the in-
plane off axis properties for the same structures were very similar when generated
via different force-fields thus once again confirming force-field independence of our
simulated results.

All this is once again very significant and of practical importance as it
shows that although many reports have been made emphasising the potential of
these systems as superior materials in many practical application in view of their
auxeticity, (e.g. as “smart filters” due to their adjustable pore size on tension
and compression), once must now re-examine these claims as such enhanced
properties will only be exhibited for loading in very specific directions. All this is in
stark contrast to the properties which are exhibited by the polyphenylacetylene-
n-triangles proposed by Grima [39] which are isotropic in plane implying that
they can be stretched in any direction in order to bring out their auxetic
character. Thus in view of all this the latter would be more appealing in practical
applications.

Despite all these “negative” results on the reflexynes, in view of their low
shear moduli and off-axis properties, it must be stated that this work has added
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more confidence in the claim that “reflexynes are auxetic on-axis” since we have
now shown that this result is “independent” of the force-field used in the study.

It is also important to note that this study cannot be treated as the “final”
study on these polyphyenylacetylene systems. Apart from the fact that from
the experimental aspect, much still needs to be done if these systems are to
be synthesised and tested, even from the modelling side, despite the many new
developments made in this dissertation, there are still many aspects which need
to be investigated further.

For example, as regards molecular modelling, there is a lot of room for
further investigations particularly since in the case where empirical investigations
are carried out the systems are treated as balls and springs — and as a result
of this the electrons are ignored. These systems have very interesting electronic
properties for example they are expected to exhibit conjugation, hence these
polymers have applications as conductive polymers. Such study involving electrons
must be performed using a quantum mechanically based approach which are much
more computationally intensive.

Additionally, one might consider modelling of a systems made from a finite
“sections” of these networks in an attempt to simulate a more realistic system
where the sample is not a perfect single crystal. The study can also be extended
to newer and better parameterised force-fields as they become available.

Regarding the off-axis properties, another source of further work could be
a more detailed investigation in these properties, for example, by studying them
in the other planes.

Furthermore, it is important to note that flexynes and reflexynes are not
the only polyphenylacetylene networks that can be constructed. The methodology
used in this dissertation may also be used (perhaps with some modifications)
on other organic networks of a similar nature, such as 3D polyphenylacetylene
networks with a (10,3)-b topology.
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