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Abstract: Auxetic materials exhibit the very unusual property of becoming wider when

stretched and narrower when compressed, – they have a negative Poisson’s ratio. This unusual

behaviour is the source of many desired effects in the materials’ properties and it is therefore, no

wonder that auxetics are described as being superior to conventional materials in many practical

applications. Here we make use of force-field based molecular modelling simulations in order to

investigate the mechanical properties of polypehyleacetylene systems known as (n, m)-flexyne

and (n, m)-reflexyne in an attempt to extend the existing knowledge there is regarding these

systems. These systems have already attracted considerable consideration since negative on-axis

Poisson’s ratios have been discovered for the reflexynes.

We first developed a methodology for the modelling and property determination of

flexyne and reflexyne network systems which we validated against existing published data.

Then, extended the study to prove the simulated results were independent of the modelling

methodology or the force-field used. In particular, we showed that on-axis auxeticity in the

reflexynes is a force-field independent property, i.e. a property which is not an artefact of the

simulations but a property which is likely to be present in the real materials if these were to be

synthesised.

We also studied and reported the shear behaviour of these systems were we show that

the flexynes and reflexynes have very low shear moduli, a property which regrettably limits

the prospects of these systems in many practical applications. Finally we examine the in-plane

off-axis mechanical properties of the systems and we report that in general, these mechanical

properties are highly dependent on the direction of loading. We also find that the auxeticity

exhibited by the reflexynes on-axis is lost when these systems are loaded off axis since the

Poisson’s ratios becomes positive very rapidly as the structure is stretched slightly off-axis (e.g.
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15deg off-axis). This is once again of great practical significance as it highlights another major

limitation of these systems in their use as auxetics.

Keywords: 2D flexyne polyphenylacetylene networks, 2D reflexyne polyphenylacetylene net-

works, auxetics, molecular simulations

1. Introduction

Most materials (e.g. rubber, glass, metals, etc.), have a positive Poisson’s

ratio, meaning that they contract transversely when pulled longitudinally and

expand transversely when compressed longitudinally. However a small number

of naturally occurring and synthetic substances exhibit the unusual property

of doing the opposite, that is, they become wider when stretched and thinner

when compressed. These unusual materials are now known as auxetics, a word

derived from the Greek auxetos meaning “which can be increased” [1], but have

also occasionally been referred to as “anti-rubber” [2], “dilational” [3] or “self-

expanding” [4].

Mathematically, the Poisson’s ratio, ν, in the XY plane cross-section of

the materials for loading in the X-direction is defined as the ratio of a lateral

contraction to the longitudinal extension during stretching of a material for

specified directions, ν = −εy/εx, where εy is the strain in the transverse Y -

direction and εx is the strain in the longitudinal X-direction. For most materials

this value is positive since a positive εx (i.e. extension in the X-direction) is

accompanied by a negative εy (i.e. a contraction in the Y -direction). Also, for most

everyday materials, the Poisson’s ratios are the same irrespective of the particular

cross-section of materials studied, and the direction of loading plane (isotropic).

Typical values for Poisson’s ratios for commonly used materials include 0.5 for

rubbers and for soft biological tissues, 0.45 for lead, 0.33 for aluminium, 0.27 for

common steels, 0.1 to 0.4 for cellular solids such as typical polymer foams, and

nearly zero for cork [5]. Materials can also be anisotropic which implies that the

physical properties of the system depend on the direction of the applied stretching.

For instance, in some crystals, the Poisson’s ratio υ can be positive in one direction

and negative in another.

The first mention of a material with a negative Poisson’s ratio dates back

to 1944 when it was reported that crystals of iron pyrite exhibited a negative

Poisson’s ratio [6]. However, this was treated as an anomaly and the study

of materials with negative Poisson’s ratio only took off in the 1980’s, with

auxetic behaviour being experimentally measured or predicted in various types

of materials such as foams, [5, 7–11] nano-structured and liquid crystalline

polymers [1, 12, 4, 13–15], micro structured polymers [16–18], cubic materials [19]

and zeolites [20]. Despite considerable progress in this field which is evidenced by

the growth in literature in the last couple of decades, the design and synthesis

of materials with ν < 0 still remain somewhat of a real challenge. Since these

materials are quite rare in nature and extremely useful, the impetus for them to

be designed, studied and manufactured is great and has attracted experts such as

scientists and engineers.
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Auxetic materials are not only interesting scientifically for their rare and

counter-intuitive elastic behaviour, but also for a number of potentially useful

technological applications. For example, for an isotropic material, a negative

value of the Poisson’s ratio alters significantly the other mechanical properties.

Generally there are four constants which are used to describe the elastic behaviour

of an isotropic material and these are the Young’s Modulus (E), the shear modulus

(G), the bulk modulus (K) and the Poisson ratio (ν), but these four constants

are interdependent through the following relationships:

G=
E

2(1+ν)
K =

E

3(1−2ν)
E=

9KG

(3K+G)
ν=
1

2

(

3K−2G

3K+G

)

(1)

The importance of these four equations lies in the fact, that knowing any two out of

the four parameters the third parameter may be obtained by a simple calculation.

Furthermore these relationships give a very good picture of the properties of the

system.

In spite of all the advantages and new possibilities that these auxetic

materials offer together with their uncommon nature, there are still a number

of lacunae within the field which are yet to be studied thoroughly. Thus one

of the aims of this paper shall be to carry out a theoretical study on 2D

polyphenylacetylene “flexyne” and “reflexyne” networked polymers originally

reported by Evans et al. in 1991 [21] (see Figure 1 for an example) which despite

being the subject of various papers, have not been fully characterised as of yet.

These polyphenylacetylene networks are of interest since as reported by Evans

et al. [21] and in various other studies [21–25], the reflexyne networks are predicted

to mimic the behaviour of re-entrant hexagonal honeycombs [26, 27] and exhibit

negative on-axis Poisson’s ratios.

In this paper the 2D polyphenylacetylene “flexyne” and “reflexyne” net-

worked polymers will be studied using computer based modelling and simulations,

a technique which was chosen since so far these networks have not yet been syn-

thesised. In particular, (n, m)-flexynes and (n, m)-reflexynes, where, m and n are

the number of triple bonds on the vertical and side arms of the unit respectively,

will be studied.

Figure 1. (a) Pictorial representation of (1,4)-reflexyne and (b) (1,4)-flexyne
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2. Simulation methodology

Any modelling experiment involves three distinct stages, namely:

(a) Defining the system to be modelled;

(b) Setting up the energy expression and performing an energy minimisation;

(c) Performing the particular calculations, in this case, simulation of the single

crystalline elastic constants.

2.1. Defining the system to be modelled

The first stage in any force-field based molecular modelling simulation

is to enter the coordinates of the atoms of the system under study into the

molecular modelling environment and to define the connectivity of these atoms.

This information (i.e. the initial coordinates of the atoms and initial definition

of the bonds) on which calculations will then be performed shall henceforth be

referred to as the starting geometry.

To illustrate the methodology used in this dissertation for constructing the

starting geometries of the flexyne and reflexyne networks, we shall discuss in detail

the procedure used to construct the (1,4)-flexyne and (1,4)-reflexyne systems.

The conventional and re-entrant infinite periodic honeycomb structures may

be constructed using a unit cell which contains two vertical chains and four arm

chains as illustrated in Figure 2 (a) and 3 (b), bearing in mind that in the molecular

system, each vertex of the honeycomb system represents a phenyl ring whilst the

vertical chains and the arm chains represent acetylene chains. The repeat unit of

(1,4)-flexyne and (1,4)-reflexyne would be the systems illustrated in Figure 2 (c)

and 3 (d), respectively.

These starting geometries in Figure 2 (c) and 3 (d) were entered using the

model builder and templates available in Cerius2 through the graphical user

interface (GUI). In this procedure, the user inserts all of the atoms into the system

and connects them together to define the “bonds” in the systems. This results in

a very rough sketch of the system which simply defines the atoms in the model and

how these atoms are connected in space (see Figure 3 (a) for the initial structure

for (1,4)-flexyne). The “Clean” function was then used to make the model look

more realistic (see Figure 3b). These atoms were then aligned in the y-z plane

(see Figure 3 c), i.e. with the vertical ribs aligned parallel to the z-axes. This

alignment was selected because in Cerius2, crystals are aligned in such a way

that:

• The [001] crystal direction is always fixed parallel to the Z “global” direction;

• The [010] crystal direction always lies in the Y Z plane;

• The [100] crystal direction is free and as a result it may assume any direction.

Thus, by aligning the flexyne basic unit in this way, the user can be sure

that the crystal is always aligned to the Y Z plane with the vertical ribs remaining

parallel to the Z-direction.

These systems (which could be thought of as the monomers of infinitely

large networked polymers) were then converted into a crystal using the crystal
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building module. The initial cell parameters were set as α=β= γ=90deg whilst

a was set to 4Å, b= 11Å and c= 35Å for (1,4)-reflexyne and c= 30Å for (1,4)-

flexyne. The choice for the values of b and c was made on visual observations

making sure that the unit cells fit properly within the cell border (see Figure 3d).

On the other hand, the choice of a was based on the fact that for graphite-like

systems, the “infinite” sheets are at a distance of about 3.6Å from each other.

The final step in the inputting of the model involved joining the “free ends” of the

acetylene chains to the phenyl ring in adjacent cells to produce the (1,4)-flexyne

or (1,4)-reflexyne networks (Figure 3 e).

2.2. Setting up the energy expression and energy minimization

Once the starting structure was inputted in Cerius2, it was necessary to set

up of the energy expression. The energy expression is an equation describing the

potential energy of the system as a function of its internal/Cartesian coordinates

and it is used by the molecular modelling program in the energy minimisation of

the system. In this dissertation, various force-fields which have been parameterised

for use with hydrocarbons were used, although in this validation study, only the

DREIDING 2.21 force-field is considered since all results on the flexyne/reflexyne

systems reported in the literature were obtained using this force-field (or earlier

versions of it).

The DREIDING 2.21 force-field has an energy expression which is con-

structed from bonding and non-bond interactions:

EDREIDING=EDREIDINGvalence +EDREIDINGnon−bond (2)

where, for the hydrocarbons in our system (which do not have any inversion

terms or H-bonding), the valence bond-terms are described by a harmonic bond

stretch term, a harmonic angle bending term and a dihedral torsion angle term,

whilst the non-bond terms are described by the standard Columbic term and the

Lennard-Jones 12–6 VDW potential, i.e.:

EDREIDINGvalence =
∑

all bond

lengths
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qiqj
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Aij
r12ij
−
Bij
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(4)

where all terms have their usual meaning.

It is important to note that this force-field, despite having a term for

the Columbic interactions, does not contain any information relating to the

partial atomic charges of the system that are needed for use with this term.

Instead, these partial charges have to be computed through a separate method.

In this dissertation, these charges were computed using the Charge-Equilibration
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(a)

(b)

(c)

(d)

Figure 2. A figure showing the arrangement in space of the conventional (a) and re-entrant

honeycombs (b), respectively, and the starting geometries as inputted into Cerius2,

(c) and (d) respectively

procedure developed by Rappe et al. [28]. This procedure was chosen in preference

to the older but still widely in use Gasteigner-Marsili method since the Gasteigner-

Marsili method is not recommended for use with delocalized systems, i.e. systems

which are similar to the ones discussed in this dissertation.

Furthermore, due to the fact that our systems are actually representing an

infinite amount of atoms (i.e. they are periodic systems), it is not possible to

include all of the atom pairs for constructing the non-bond part of the energy

expression since there is an infinite amount of these terms. In order to decrease

the computational time the amount of non-bond pair terms that are included is

truncated by applying cut-offs. Cerius2 has three methods for doing this namely

the “Direct method”, the “Spline method” and the “Ewald method”. The Direct

method calculates non-bond interaction energies for all atom pairs whose members

are closer than some cut-off distance. This method is generally not recommended,
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(a) (b)

(c) (d)
(e)

Figure 3. A set of figures showing the different stages in the modelling of (1,4)-flexynes,

namely the (a) un-cleaned structure (b) cleaned structure (c) structure aligned to the

Y Z plane (d) built crystal and (e) the unit cells joined together to form an infinite tessellation

except for small models, for which the cut-off distance should be set to a large

enough value that all interactions are calculated. Similarly, the Spline method

calculates non-bond interaction energies for all atom pairs whose members are

closer than the spline-on distance. The interaction energy is gradually attenuated

(by a spline function) from its full value to zero as atom-atom distances go

from the spline-on to the spline-off distance. The interaction energy is set to

zero for atom-atom distances greater than the spline-off distance. A non-bond

list, where the atom pairs to be considered in the calculation are listed, is used

with the Spline method for faster calculation with most models. However, whilst

the “spline cut-offs” work very well for non-periodic models, it has been shown

that better results for periodic systems (i.e. the systems modelled in this paper)
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can be obtained using the “Ewald Summation” technique [29–31]. In the Ewald

Summation Method the Coulombic interactions and attractive van der Waals

interactions are calculated by the Ewald method [32, 33], while the repulsive van

der Waals interactions (which fade out quickly with distance) are calculated by

the direct method (described previously). A non-bond list must be used with

this method. Since the Ewald summation technique is recommended for periodic

models and preferred over the spline method, in this dissertation we shall be using

this technique for curtailing the non-bond part of the energy expression. (Note

that the Ewald technique cannot be used for non periodic models.)

The energy expression was set up using all parameters, functional forms

and settings as set by default in the DREIDING 2.21 force-field with the exception

of partial charges which were computed using the Charge Equilibration procedure

by Rappe et al. and using the Ewald technique for curtailing the non-bond part

of the energy expression as described. An energy minimisation of the system

was then applied to the system(s). This process involves small adjustments of

the conformation (iterations) in order to lower the energy of the system using

minimisation algorithms (minimisers). In reality, the number of iterations, or

conformation adjustments may range from one to several thousands. Therefore the

time needed to carry out a minimisation depends, amongst other things, on the

size of the system, the type of minimisation algorithm and the energy expression

itself. In Cerius2, the user can choose from a number of available minimisers

based on the steepest descent algorithm, the conjugate gradient algorithm which

was used in this dissertation and more accurate Newton-Raphson methods.

The program also features the “SMART minimiser” which makes use of several

minimisation algorithms which are implemented into the workbench sequentially,

starting from the coarse Steepest Descent minimiser and going down to finer

minimisers such as the Newton-Raphson. This switching is done automatically

as the minimisation proceeds (though the user can pre-select the criteria for

switching) and ensures that iterations at a particular level which do not show any

progress can be discontinued in favour of more fruitful iterations. This minimiser

was used in this paper.

Finally it is important to note that minimisers can only give numerical

solutions and the exact location of the minimum is unlikely to be identified.

Therefore, a set of pre-defined convergence criteria (also known as termination

criteria) have to be used to stop the minimisation once the criteria are satisfied.

These convergence criteria indicate how close the calculation is to the exact

minimum point, and the higher (i.e. stricter) the convergence criteria are, the

longer it will take for these criteria to be satisfied with the benefit that the

simulated minimum would be closer to the true minimum. The most common

method for defining the convergence criteria is to specify the root mean square of

the derivative of the energy expression (RMS force) as being less than a particular

value. Furthermore, a maximum number of iterations is also set, and minimisation

is normally stopped after the earlier of either reaching the convergence criteria or

the maximum number of iterations.
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Table 1. The values of the different termination criteria used by Cerius2

Convergence criteria Moderate Standard High

RMS force (kcal mol−1 Å−1) 0.50000 0.10000 0.00100

Max force (kcal mol−1 Å−1) 2.50000 0.50000 0.00500

Energy difference (Kcal mol−1) 0.00200 0.00100 0.00010

RMS displacement (Å) 0.01000 0.00300 0.00001

Max displacement (Å) 0.05000 0.01500 0.00005

Max stress (GPa, only for periodic systems) 0.50000 0.10000 0.00100

RMS stress (GPa, only for periodic systems) 2.50000 0.50000 0.00500

In Cerius2, the user may choose to use (in isolation, or in combination) var-

ious convergence conditions. It also defines default medium and high convergence

criteria (see Table 1).

The minimisations were required to prepare the system for deriving the

single crystalline elastic constants. In such simulations, particularly when using

the second derivative method, it is essential that the energy minimum is properly

identified, and hence high convergence criteria must be used.

It is important to note that to calculate the partial charges of the system

correctly through the charge-equilibration procedure, the partial charges must be

updated as the energy minimisation proceeds, i.e. as the positions of the atoms

are updated along the path to the energy minimum. This is due to the fact that

the computed charges through Rappe’s charge-equilibration procedure depend not

only on the connectivity but also the actual position of the atoms.

In view of all this, the following procedure for setting up the energy

expression and minimisation was used:

1. Loading of DREIDING 2.21 force-field with default settings with the exception

for the method of curtailing the non-bond interactions which was set to the

Ewald technique;

2. Calculation of partial charges using the Charge Equilibration procedure;

3. Short energy minimisation using the SMART minimiser up to the earlier of

200 steps or reaching of the Cerius2 default standard convergence criteria;

4. Re-calculation of partial charges using the Charge Equilibration procedure;

5. A second short energy minimisation using the SMART minimiser up to the

earlier of 200 steps or reaching of the Cerius2 default standard convergence

criteria;

6. Re-calculation of partial charges using the Charge Equilibration procedure;

7. A third energy minimisation using the SMART minimiser up to the earlier of

5000 steps or reaching of the Cerius2 default high convergence criteria;

8. Re-calculation of partial charges using the Charge Equilibration procedure;

9. A fourth and final energy minimisation using the SMART minimiser up to

the earlier of 5000 steps or reaching of the Cerius2 default high convergence

criteria;
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10. Saving the model in order to use it in the determination of the mechanical

properties of the system under study (this is explained later on).

These steps were executed through the following script so as to:

a) Minimise human errors where the possibility of the user skipping a step in

a highly repetitive procedure is eliminated;

b) Reduce the computational time taken by Cerius2, by running the calculations

in background mode.

2.3. Calculating the Mechanical (Elastic) Properties

Cerius2 provides three automated methods for calculating the mechanical

properties. These are the second derivative method, the constant stress minimi-

sation method and the constant strain minimisation method. Using any of the

three methods, the full 6×6 set of elastic constants can be computed from which

one may obtain all the other mechanical properties (the Young’s moduli, shear

moduli and Poisson’s ratios.

The second derivative method calculates the second derivative of the lattice

energy, with respect to the atomic coordinates by performing a single point energy

calculation. It computes a symmetric stiffness matrix, since the elements cij relate

to the second derivative of the energy expression (with respect to strain, εi) as

follows:

Cij =
1

V

∂2E

∂εi∂εj
(5)

where V is the volume of the unit cell and E is the energy of the system.

The constant stress minimisation method calculates the elastic properties

from the strain response to a series of applied external stresses and an empirical

stress-strain relationship is calculated. Cerius2 employs an automated method

where the structure is minimised repeatedly (a sweep) with a series of pre-defined

stresses. On the other hand, the constant strain minimisation method carries out

sweeps of minimisations at pre-defined strains as opposed to stresses.

In addition to this, the user may also perform a “manual” constant stress

minimisation where a number of energy minimisations at different values of

applied stress are performed and then the minimised structures at the various

stress are used to study the effect of stress on the system. The user, may for

example, measure the strains from the unit cell vectors and use these to plot

stress-stain plots.

3. Simulation of the structure and on-axis mechanical

properties of (1,4)-flexyne and (1,4)-reflexyne using

the DREIDING force-field

In this section we will use the three automated methods and the “manual

constant stress” method will be used to simulate the properties of the (1,4)-flexyne

and (1,4)-reflexyne networks.



Mechanical Properties of 2D Flexyne and Reflexyne Polyphenylacetylene. . . 247

3.1. Simulations

Simulations were carried out using the commercially available Cerius2

Molecular Modelling software (Accelrys, Version 4.10) running on a Silicon

Graphics Octane2 workstation running the IRIX 6.4 operating system.

The procedure for calculating the elastic constants through the second

derivative method, automated constant strain and automated constant stress

methods were driven through the script file (see Script 1). In this script:

• Lines 5–7 load the force-field and define the non-default force-field settings, i.e.

that the non-bond terms are summed and truncated using the Ewald summation

technique;

• Line 9 starts a for/next loop so that lines 10–44 are executed for each of the

structures being considered (in this case, twice: first for (1,4)-flexyne and then

for (1,4)-reflexyne);

• Line 10 loads the initial unminimised structures; line 12 calculates the partial

charges using the Charge Equilibration procedure;

• Lines 14–24 minimise the systems to high convergence criteria using the SMART

minimiser. The minimisation is carried out in such a way that the charges are

updated as the system is optimised (lines 17, 19);

• Line 25 saves the minimised structures;

• Lines 26–43 simulate the mechanical properties of the minimised systems using

the second derivative, automated constant stress and automated constant strain

methods.

Script 1 was then re-run using the conjugate gradient minimisation

algorithm by replacing Line 14 with: MECHANICS/METHOD ”CONJUGATE

GRADIENT”.

Note that in this procedure, for each of the two minimisers used, the

mechanical properties are calculated three times (i.e. six times in total for each

structure). Furthermore, it is important to note that despite the fact that the

program allows the user to control various settings, in most cases, the default

settings were suitable for the simulations. In fact, with the Second derivative

method (lines 26–30), the default settings were used throughout whilst in the

automated Constant Stress/Strain methods (lines 31–36 and 37–43), the only

setting which was altered was the parameter that 11 points would be used for

the calculation of each of the six stress-strain curves1: five in compression, five in

tension and one at zero stress. The default settings were used for the rest of the

options.

1. With these settings, the procedure involves 66 minimisations for each constant stress or

constant strain simulation. The default setting is to use only two points for each stress-strain

curve which, despite being sufficient for plotting a straight line graph, would fail to give an

indication of any errors.



248 L. Trapani, R. Gatt, L. Mizzi and J. N. Grima

1 #Setting directories#

2 set home ’’/usr/chem/lara05’’

3 set msi ’’/software/accelrys/cerius2 c410/Cerius2-Resources’’

4 #Loading ff and assigning of non-default ff settings#

5 FORCE-FIELD/LOAD FORCE FIELD ’’${msi}/FORCE-FIELD/DREIDING2.21’’

6 FORCE-FIELD/LONG RANGE METHOD VDW EWALD

7 FORCE-FIELD/LONG RANGE METHOD COULOMB EWALD

8 #’Foreach’ loop to run script twice, once for each structure#

9 foreach STR {14F 14R} {

10 FILES/LOAD

’’${home}/Chapter3 initial structures/${STR} INIT.msi’’

11 #Charge equilibration#

12 CHARGE/CALCULATE

13 #Minimisation using 200 iterations and calculating the charges#

#at the end of each minimisation#

14 MECHANICS/METHOD ’’SMART MINIMISER’’

15 MECHANICS/MAX ITERATIONS 200

16 MECHANICS/MINIMIZE

17 CHARGE/CALCULATE

18 MECHANICS/MINIMIZE

19 CHARGE/CALCULATE

20 #High convergence minimisation using 5000 iterations#

21 MECHANICS/MAX ITERATIONS 5000

22 MECHANICS/CONV LEVEL ’’HIGH CONVERGENCE’’

23 MECHANICS/MINIMIZE

24 MECHANICS/MINIMIZE

25 FILES/SAVE ’’${home}/Chapter3 results/${STR} min.msi’’

26 #Second Derivative Calculation#

27 MECHPROPS/MINIMIZE FIRST NO

28 MECHPROPS/ACCUMULATE AVERAGES NO

29 #Saving the output from the Second Derivative Calculation#

30 MECHPROPS/NAMES ROOT ’’${home}/CH3/MP SD ${STR}’’

31 #Constant Stress Calculation#

32 MECHPROPS/CALCULATE

33 MECHPROPS/METHOD ’’CONST STRESS MIN’’

34 MECHPROPS/STRESS MIN NO POINTS 11

35 #Saving the output from the Constant Stress Calculation#

36 MECHPROPS/NAMES ROOT ’’${home}/CH3 /MP CSTRESS ${STR}’’

37 #Constant Strain Calculation#

38 MECHPROPS/CALCULATE

39 MECHPROPS/METHOD ’’CONST STRAIN MIN’’

40 MECHPROPS/STRAIN MIN NO POINTS 11

41 #Saving the output from the Constant Strain Calculation#

42 MECHPROPS/NAMES ROOT

’’${home}/Chapter3 initial structures/MP CSTRAIN ${STR}’’

43 MECHPROPS/CALCULATE

44 }

Script 1. The script which minimises the initial structures and then simulates their

mechanical properties using the Second Derivative, automated Constant Stress and automated

Constant Strain methods
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Finally, we also simulated the mechanical properties in the Y Z plane2 using

the “manual constant strain method” where:

(a) tensile/compressive stresses in the range of ±5% were applied in the Y - and

the Z-direction in order to be able to obtain the Young’s moduli (Ey and

Ez), the Poisson’s ratios (νyz and νyz) and shear coupling coefficients (ηxz
and ηyz);

(b) shear stresses in the ZY plane were applied in the range of ±0.05GPa at

0.01GPa intervals in order to be able to obtain the shear modulus (Gzy) and

the shear coupling coefficients (ηzx and ηzy).

This procedure was also carried out by Script 2. In this script:

• Lines 1–10 load the DREIDING 2.21 force-field as explained in section 3.2.1 (b);

• Lines 11–14 create the folders needed to save the files produced from this

simulation;

• Line 16 loads the system under study (taken from Script 1);

• Lines 18–29 define the stresses and their direction3;

• Lines 30–43 minimise the system under the applied stresses as explained in

section 3.2.1b;

• Line 44 saves the minimised systems under the applied stress in the .msi format.

The files created in line 44 contain the unit shape matrix, from which the

unit cell projections in the X, Y and Z directions can be calculated. In Cerius2,

the unit cell relates to the Cartesian axis by having the cell vector c parallel to

the Z-axis, and b in the Y Z plane. With these constraints, the cell matrix H is

an upper triangular matrix:

H =





h11 h12 h13
0 h22 h23
0 0 h33



 (6)

where hij relate to the unit cell vectors a , b and c through

a =h11i+h12j +h13k

b =h22j +h23k

c=h33k

(7)

Thus, the projections of the unit cell in the X, Y and Z-directions

respectively are h11, h22, and h33.

The unit shape matrix for the system under different loads was then

extracted to a single file. This procedure was also carried out using Script 3.

In this script

2. Since the analysis of the data obtained from this method is fairly time consuming, we

will only simulate the properties in the plane of the structure, i.e. the Y Z plane, which is the

main plane of interest.

3. Note that the systems were found to exhibit different properties in tension and compres-

sion (see discussion). Thus, Line 18 was modified to suit the system being modelled.
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1 #Setting directories#

2 set home ’’/usr/chem/lara05’’

3 set msi ’’/software/accelrys/cerius2 c410/Cerius2-Resources’’

4 #Running the script for the various load directions and ff#

5 Foreach FORC {LOAD Y} {

6 FORCE-FIELD/LOAD FORCE FIELD ’’${msi}/FORCE-FIELD/$DREIDING2.21’’

7 FORCE-FIELD/LONG RANGE METHOD VDW EWALD

8 FORCE-FIELD/LONG RANGE METHOD COULOMB EWALD

9 #Running the script for the various structures under study#

10 Foreach STR {14F} {

11 #Setting up the Folders#

12 !mkdir ${home}/manual stress fin/ DREIDING2.21

13 !mkdir ${home}/manual stress fin/ DREIDING2.21/${STR}

14 !mkdir ${home}/manual stress fin/ DREIDING2.21/${STR}/${FORC}

15 #Loading the initial structure#

16 FILES/LOAD

’’${home}/Chapter3 initial structures/${STR} INIT.msi’’

17 #Running the script for various loads#

18 Foreach LOAD {{0.00 0.56 1.12 1.68 2.24 2.80}} {

19 #Appling the load in the appropriate direction#

20 If {$FORC == ’’LOAD Y’’} {

21 MECHANICS/3D STRESS ’’0’’ ’’${LOAD}’’ ’’0’’ ’’0’’ ’’0’’ ’’0’’

22 set direct ’’y’’

23 } elseif {$FORC == ’’LOAD Z’’} {

24 MECHANICS/3D STRESS ’’0’’ ’’0’’ ’’${LOAD}’’ ’’0’’ ’’0’’ ’’0’’

25 set direct ’’z’’

26 } else {$FORC == ’’SHEAR ZY’’} {

27 MECHANICS/3D STRESS ’’0’’ ’’0’’ ’’0’’ ’’${LOAD}’’ ’’0’’ ’’0’’

28 set direct ’’zy’’

29 }

30 #Charge equilibration#

31 CHARGE/CALCULATE

32 #Minimisation using 200 iterations and calculating the charges#

#at the end of each minimisation#

33 MECHANICS/METHOD ’’SMART’’

34 MECHANICS/MAX ITERATIONS 200

35 MECHANICS/MINIMIZE

36 CHARGE/CALCULATE

37 MECHANICS/MINIMIZE

38 CHARGE/CALCULATE

39 #High convergence minimisation using 5000 iterations#

40 MECHANICS/MAX ITERATIONS 5000

41 MECHANICS/CONV LEVEL ’’HIGH CONVERGENCE’’

42 MECHANICS/MINIMIZE

43 MECHANICS/MINIMIZE

44 FILES/SAVE ’’${home}/manual stress fin/DREIDING2.21/${STR}/

${FORC}/${STR} ${LOAD} ${direct}.msi’’

45 } } }

Script 2. The script used to simulate the mechanical properties using the ‘manual constant

strain’ method, where LINE 18 defines the loads in the particular direction being studied. This

line is defined according to structure being modelled, the direction of measurement and

whether the loads are in tension or compression



Mechanical Properties of 2D Flexyne and Reflexyne Polyphenylacetylene. . . 251

• Line 1: the script is defined as command shell file;

• Lines 4–9: the loads used in the previous simulation are entered in the variables

s1, s2, .. ., s6;

• Lines 10–13: the script is instructed to loop for the various load directions and

structures used in this study;

• Lines 14–24: the variable “direct” is given its appropriate value;

• Line 25: the folder path where the files were saved in the previous simulations

is defined;

• Line 26: a new file named “Res short.res” is created;

• Lines 27–28: the script is instructed to loop for the various loads applied on the

system under study;

• Lines 29–33: the unit cell projection recorded in the previous simulations are

extracted and saved in the “Res short.res” created previously.

This data extracted from the unit cell shape matrix of the system under

study at different loads was then plotted as strain-strain and stress-strain plots

and from these plots the Poisson’s ratios, coupling coefficients, Young’s Moduli

and shear modulus in the Y Z plane were calculated.

In particular,

(a) The Poisson’s ratios were obtained from a strain – strain relation since:

νij =−
εj
εi

(wherei, j= y, z)

(b) The coupling coefficients were obtained from a shear strain – tensile strain

relation since:

ηiz =
γzy
εi

and ηzi=
εi
γzy

(wherei, j= y, z)

(c) The Young’s modulus were obtained from a tensile stress – strain relation

since:

Ei=
σi
εi

(where i= y, z)

(d) the shear modulus was be obtained from a shear stress – strain relation since:

Gzy =
τzy
γzy

(where i= y, z)

Note that together, these properties make up the “full 3× 3 compliance

sub-matrix” S :

S =





s11 s12 s13
s21 s22 s23
s31 s32 s33



=







1

Ey

−ν21
Ez

η31
Gzy

−ν12
Ey

1

Ez

η32
Gzy

η13
Ey

η23
Ez

1

Gzy






=





εy
σy

εy
σz

εy
τzy

εz
σy

εz
σz

εz
τzy

γzy
σy

γzy
σz

γzy
τzy





which can then be transformed to obtain the off-axis properties.
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1 #!/bin/sh

4 s1=0.05

5 s2=0.04

6 s3=0.03

7 s4=0.02

8 s5=0.01

9 s6=0

10 for FORC in ’’LOAD Y’’ ’’LOAD Z’’ ’’SHEAR ZY’’

11 Do

12 for STR in ’’14F’’ ’’14R’’

13 do

14 if [ $FORC ’’LOAD Y’’ ] ; then

15 direct = ’’y’’

16 else

17 if [ $FORC ’’LOAD Z’’ ] ; then

18 direct = ’’z’’

19 else

20 if [ $FORC ’’SHEAR ZY’’ ] ; then

21 direct = ’’zy’’

22 fi

23 fi

24 fi

25 Pth=/usr/chem/lara05/manual stress fin/DREIDING2.21/${STR}/

${FORC}/

26 echo ’’Projections’’ >${pth}RES short.res

27 for stre in -$s1 -$s2 -$s3 -$s4 -$s5 $s6 $s5 $s4 $s3 $s2 $s1

28 do

29 echo ’’’’ >>${pth}RES short.res

30 echo ’’${STR} ${stre} ${direct}’’ >>${pth}RES short.res

31 echo ’’’’ >>${pth}RES short.res

32 sed -n -e ’’4,6w ${pth}${STR} ${stre} ${direct}.res’’

${pth}${STR} ${stre} ${direct}.msi

33 cat ${pth}${STR} ${stre} ${direct}.res >>${pth}RES short.res

34 done

35 done

36 Done

Script 3. The script file used to extract the unit shape matrix from the .msi files

3.2. Results and Discussion

It was noted that all minimisations carried out prior to calculation of the

elastic constants were performed to completion and in less than 1 minute (see

Table 2). Also, it was found that the time taken for the different automated4 sim-

ulations depended significantly on the method used for simulating the simulation

as detailed in Table 2.

4. Since the “manual constant strain” method is mostly time consuming in the data analysis

stage which has to be done manually by the user, comparison times are presented only for the

automated methods where the results are generated by the programme.



Mechanical Properties of 2D Flexyne and Reflexyne Polyphenylacetylene. . . 253

Table 2. The time taken for the simulations when using (a) the conjugate-gradient

minimiser, and (b) the SMART minimiser

Time taken (minutes, seconds)

(1,4)-flexyne (1,4)-reflexyne

Minimisation (lines 13–24)
(a) 9s

(b) 15s

(a) 45s

(b) 5s

Computation of the mechanical properties though

second derivative method (lines 27–30)

(a) 1s

(b) 1s

(a) 1s

(b) 1s

Computation of the mechanical properties though

automated constant stress method (lines 32–36)

(a) 49m 52s

(b) > 2 days*

(a) 40m 56s

(b) > 2 days*

Computation of the mechanical properties though

automated constant strain method (lines 38–43)

(a) 3m 4s

(b) 9h 43m

(a) 3m 7s

(b) N//A

* Note that when using the conjugate gradient minimiser all simulations were executed

to completion. However when using the smart minimiser, the automated constant stress

method took a very long time, and was discontinued after 48 hours from its initiation

Table 2 shows very clearly that when comparing the three automated

methods, the Second Derivative method was the fastest followed by the automated

constant strain method which was much slower. This substantial increase in

the computational time is due to the fact that for the constant stress method

and similarly for the constant strain method, the process involved sixty-six

mimisations, i.e. eleven for each of the six independent elements of the stress

vector (three axis stresses and three shear stresses).

In the case of the automated constant stress method, when using the

conjugate gradient minimiser, the simulations were c. 16 times slower than the

automated constant strain method and c. 3000 times slower than the second

derivative method. When using the SMART minimiser, the automated constant

strain method took an even longer time to complete (about 350 times more then

when using the conjugate gradient method). Moreover, as stated in Table 2, the

automated constant stress simulations took so long, that after 48 hours they had

to discontinued by the user. The reason for the increase in duration when using the

SMART minimiser is probably that the SMART minimiser makes use of variants

of the Newton-Raphson method which are very computationally intensive [34].

Table 3 and Table 4 show a comparison of the on-axis mechanical properties,

i.e. the three Young’s moduli, the six Poisson’s ratios and the three shear moduli)

with each other and to published data (where available). These results show

very clearly that despite the very big differences in the computational times, the

three automated methods give very comparable results, and that irrespective of

the computational method used, (1,4)-flexyne exhibits positive on-axis Poisson’s

ratios whilst (1,4)-reflexyne exhibits negative on-axis Poisson’s ratios in the Y Z

plane, i.e. the plane of the honeycombs. For example, in the case of (1,4)-flexyne,

all three methods gave results within the range of 0.85±0.03 for νzy and 0.34±0.02

for νyz whilst in the case of (1,4)-reflexyne, the range for νzy was from −0.28±0.02

whilst for νyz, the range was −0.37 to −0.38. Furthermore, these values were also
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comparable to the ones obtained by Evans et al. [22] and Alderson et al. [23] thus

adding confidence in our modelling methodology.

However, when considering the properties in the other two planes, i.e. the

XY and XZ planes, some of the properties were found to be dependent on the

method used. In an attempt to understand more clearly the reason behind these

deviations, we analysed the data which is stored by Cerius2 when computing

the mechanical properties. In particular, we analysed the data used in generating

the stress-strain curves, the gradients of which are used in the computation of

the elements of the stiffness/compliance matrices. This data showed that in the

cases when the deviations where considerable, the data was very scattered. This

was very evident, for example, in the data used for calculating the ‘12’ and ‘13’

elements of the elements which are required for the Poisson’s ratios νxy and νxz,

two properties which show considerable deviations, (see Figure 7 (a) and (b))

when compared to the data used for calculating the ‘11’ element which is used for

calculating Ex which shows little deviations (see Figure 7 c).

An explanation for this “scatter” in the data relating to the XY and XZ

planes (when compared to theXY plane) can be derived by noting the structure of

the models. The flexynes/reflexynes are essentially 2D covalent networks aligned

in the Y Z plane) which are “loosely” connected together through much weaker

non-bond interactions (π–π, similar to the interactions holding parallel graphite

layers together). This type of bonding results in systems which are “well defined”

in the Y Z plane (hence the “lack of scatter” in the data relating to this plane),

but which can adopt various “equally good” conformations in the other planes

(hence the “scatter”). Evidence for this type of bonding can be found from the

facts that:

This weaker bonding which holds together the different layers is also

reflected by the fact that the Young’s modulus in the X direction is significantly

lower than that in the other two directions (Ex is an order of magnitude lower

then the other two on-axis moduli) and that the shear moduli Gxy and Gxz are

close to zero, indicating that the different layers can easily “slip” past each other.

It is also important to note that even in the Y Z plane, the moduli are such

that the shear on-axis modulus is around 30 times lower than the on-axis Young’s

moduli. This is a very important consideration since it shows that in reality, these

materials are expected to be very weak in shear, a property which will reduce the

material’s suitability for many practical applications:

• the separation between the layers is c. 3.6Å, typical of graphite like-systems;

• phenyl rings from adjacent layers are stacked “off-centre” from each other as

illustrated in Figure 8, a stacking arrangement which is typical of systems

exhibiting π–π interactions.

These differences in the moduli (e.g. the anisotropy between the three

Young’s moduli) highlight one of the main weaknesses of the automated constant

stress method over the other methods. It is regrettable, that as illustrated in

Figure 9, the user of Cerius2 can only define the number of points per sweep and
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(a)

G32

m(ten)= 2.8539 R2(ten)= 0.9450

m(comp)=2.9209 R2(comp)=0.9476

(b)

G32

m(ten)= 1.9199 R2(ten)= 0.9235

m(comp)=1.9211 R2(comp)=0.9974

Figure 6. The plots obtained for the shear modulus from the shear stress-shear strain plots

in the ZY plane for (1,4)-flexyne (a) and for (1,4)-reflexyne (b) using the conjugate gradient

method, where m is the gradient of the plot

the range of stresses (i.e. the initial and final stresses). This information is used

for all six sweeps, irrespective of the Young’s modulus and shear modulus of the

system in the direction of loading.

This procedure can result in problems since:

• when the applied stress is too large, the system may deform past linear “stress

and strain”, a problem which could be amplified if the interactions “holding

the material together” is of a non-covalent nature;

• when the applied stress is too small, the system will experience very little

change (the stresses would be too small to be “felt” by the system) and any

differences in the projections recorded can be mainly attributed to the different

“minimisation paths”.

In fact, in an ideal scenario, it is desirable the loads used in the simulations

are such that they are around 0.5–5% of the moduli5 in the respective plane. This

5. In some cases, it may be possible to use lower values provided that the stresses are “felt”

by the system and a linear relationship is obtained for a stress–strain graph.
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(a)

(b)

(c)

Figure 7. Stress–Strain relationships as obtained from Cerius2 automated constant stress

method, highlighting the fact that for the plots (b) σx/εy (equivalent to ν21) and (c) σx/εz
(equivalent to ν31) a non-linear relationship is obtained, as opposed to (a) σx/εx

problem, (i.e. that a particular magnitude of stress could be too large for loading

in one direction but too small for loading in another direction), can be overcome if

the constant strain method is run “manually” by the user (the “manual constant

stress method”), since in this case, the user has complete control over each value

of stress applied.
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(a) (b)

Figure 8. The conformation adopted by the phenyl rings in (a) (1,4)-flexyne

and (b) (1,4)-reflexyne

Figure 9. The user defined options for the automated constant stress method in Cerius2.

This complete control over the stresses that can be applied, proved to be

a very useful property in the modelling of our systems. This is because at “larger”

stresses in compressive on-axis loading (e.g. larger than 2% of Young’s modulus),

the structure deformed beyond recognition (“imploded”), particularly for loading

in the Z-direction. This made it necessary to use a different set of stresses for

tension than that used in compression. Furthermore, we found that there are

significant differences in the results of the mechanical properties if we consider the

data “in tension” or “in compression” exclusively. In fact, one may observe that

the data obtained by the “automated methods” give an average of the “tension”/

“compression” behaviour of these materials.

An explanation for this different behaviour in tension and compression could

be due to the fact that in compression in the Z-direction at stresses which are
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higher then the critical buckling load6 for the vertical ribs, will result in buckling

of these ribs, something which would not occur in tension. Furthermore, it is also

possible that this effect is due to the fact that these systems cannot be treated

as “simple mechanical systems” since at these scales of structure, the non-bond

interactions, which are different in tension and compression, play a significant role

in determining the properties of these systems.

Nevertheless, despite the differences identified here, it should be noted that

when one considers the fact that:

• irrespective of the method used, the differences in the simulated properties, are

within ±5%, i.e. typical of the accuracy normally associated with any force-field

based study;

• the time taken for the second derivative method to compute the full set of 6×6

elastic constants is significantly lower than that required for any of the other

processes;

one may conclude that the second derivate method gives the best results in

terms of “quality/time” considerations.

3.3. Conclusion

From this section we have found that:

(1) We can reproduce the published data for (1,4)-flexyne and (1,4)-refleyne. This

is very important as it will ensure that our methodology conforms to that

used by other workers. We have confirmed that the re-entrant (1,4)-reflexyne

exhibits auxetic behaviour;

(2) We have identified that ideally, due to the fact that there are differences in the

values of the mechanical properties if one only analyses the data “in tension”

or only “in compression”, for optimal quality of the simulated results, one

should use a manual constant stress method so as to have complete control

on the simulation;

(3) Since the differences between the different methods are within the accuracy

expected for force-field based simulations, one may conclude that the second

derivate method gives the best results in terms of ‘quality/time” considera-

tions;

(4) We have found that these materials have a very practical limitation since

they have a very low shear modulus. This makes these materials vulnerable

to shear.

6. The “critical load” is the maximum load, which causes a “column” to be in a state of

unstable equilibrium, that is, any increase in the loads or the introduction of the slightest lateral

force will cause the “column” to fail by buckling.
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4. Simulation of the structure and on-axis mechanical

properties of other (n,m)-flexyne and (n,m)-reflexyne

using the DREIDING force-field

In the previous section, we have simulated the on-axis properties of (1,4)-

flexyne and (1,4)-reflexyne networks using the DREIDING force-field and showed

that (1,4)-flexyne and (1,4)-reflexyne exhibit positive and negative on-axis Pois-

son’s ratios respectively. Here we will extend this study in order to study the

effect of increasing/decreasing the size of the vertical and/or lateral branches

of the flexyne/reflexyne systems. In particular we will simulate the properties of

(1,2)-, (1,6)-, (2,2)-, (2,4)- and (2,6)-flexynes and (1,5)-, (1,6)-, (2,5)-, (2,6)- and

(2,8)-reflexynes using the DREIDING force-field.

4.1. Simulations

The methodology used in this chapter was similar to the one used in

previous section (Script 1). The only two differences were that a number of new

structures were introduced in line 9, whilst lines 31 to 43 were deleted since

only the second derivative method was employed. In this section, the mechanical

properties were measured using only the second derivative method since this

method was found to give the best quality/time ratio for these organic systems7.

4.2. Results and Discussion

The minimised conformations of (n,m)-flexyne and (n,m)-reflexyne as

obtained from the DREIDING force-field are shown in Figure 10 and Figure 11

respectively. The on-axis mechanical properties are shown in Table 5 and Table 6

whilst Figure 12 show a comparison of the mechanical properties of (n,m)-flexyne

and (n,m)-reflexyne.

Table 5 and Table 6 show that our simulated results are comparable with the

ones in the literature. This is very significant as it confirms that our methodology

is comparable to the one published in the literature. We also attempted to relate

the simulated mechanical properties to the geometry of the models.

The projection of the models in the Y Z plane is shown in Figure 10.

This shows that for the (n,m)-flexynes investigated in this study, the use of

the DREIDING force-field results in minimum energy structures with “straight”

acetylene chains. On the other hand, one may note, as highlighted in Figure 11

that in the case of (n,m)-reflexynes the vertical chains are not always straight

and they tend to start “bending” in the vertical direction as the size of the

acetylene links joining the phenyl rings increases. This effect is more evident

for (2,n)-reflexynes than for (1,n)-reflexynes. Moreover, one may note that unlike

the flexynes, the reflexynes are not perfectly planar in the third direction (see

Figure 13 (a) and (b)).

7. As noted above, there are differences in the results of the mechanical properties if one

only analyses the data “in tension” or only “in compression”. However, since these differences

are not too large, and because of time constrains, the second derivative method was employed.
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(a)

(b)

(c)

Figure 12. Plots representing the “trends” obtained in the moduli and Poisson’s ratios when

comparing the different (n,m)-flexynes
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(d)

(e)

(f)

Figure 12 – continued. Plots representing the “trends” obtained in the moduli and

Poisson’s ratios when comparing the different (n,m)-reflexynes

All this may be explained through the fact that, referring to Figure 13,

phenyl rings B and E are much closer to each other in the reflexynes when

compared to the flexynes. In fact, in the reflexynes the phenyl rings seem to

be interacting, perhaps attempting to overlap on each other so as to maximise

the π–π interactions. The extent of these interactions is dependent on the size of

the acetylene bonds as follows:
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• If the size of the diagonal acetylene chains is increased, phenyl rings B and E

will move towards each other, thus increasing this interaction;

• If the size of the vertical acetylene chains is increased, phenyl rings B and E

will move away from each other, thus decreasing this phenyl-phenyl interaction.

However, the longer the acetylene chain is, the more flexible it becomes which

in turn, results in bending of the chains.

This is not the case in the flexynes, since increasing the diagonal or vertical

acetylene chain size results in phenyl rings B and E moving away from each other,

maintaining the planar shape of the systems.

The “ease of bending” of the acetylene chains may also be explained from

a mechanical point of view in terms of the shear modulus in the Y Z plane which

is found to decrease when the size of either the vertical or diagonal acetylene

branches is increased, indicating that the structure under study will be more

prone to a change in shape. This decrease in the shear modulus upon increasing

the size of the acetylene chains is probably primarily due to a decrease in the

density of the whole system.

When comparing the mechanical properties of different (n,m)-flexynes, it

is clear that:

• All systems exhibit positive Poisson’s ratios

• Clear trends can be identified to describe the variation of the mechanical

properties with the size of the acetylene chains and:

– In the case of the Young’s moduli there is a clear increase in the Z-direction

and a decrease in the Y -direction i.e. as the size of the acetylene chains

increases both in the vertical and diagonal branches, the system will become

“harder” in the vertical direction but “softer” in the horizontal direction;

– In the case of the Poisson’s ratios, although the systems always retain

a positive value, when the size of the vertical and/or diagonal acetylene

branches is increased, the Poisson’s ratio will become more positive for

loading in the Z-direction but less positive for loading in the Y -direction;

– The shear modulus decreases as the size of the acetylene chains increases

both in the vertical and diagonal branches

Similar trends (for the Young’s moduli and Poisson’s ratios) were also found

in the published data thus further confirming that our methodology is comparable

to the one used by other workers.

The change in Poisson’s ratios may be explained by the different mech-

anisms which may be acting upon the (n,m)-flexynes. In fact, a conventional

honeycomb may deform from either of three mechanisms, namely, hinging, flexing

and dilation. For an idealised honeycomb, the former two mechanisms will result

in a positive Poisson’s ratio, whist the latter mechanism results in negative Pois-

son’s ratios. In organic systems, such the ones being investigated here, one would

expect to find these three mechanisms acting concurrently and the Poisson’s ratio

would then be expected to depend on the “major” deformation mechanism.
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(a) (b)

(c)

Figure 13. The positions of the phenyl rings in the third direction in (a) (2,6)-flexyne and

(b) (2,6)-reflexyne. (c) A schematic diagram showing the relative positions of the phenyl rings

in flexynes and reflexynes

When considering the (n,m)-reflexynes systems, it is evident from Figure 12

that:

• All reflexyne systems exhibit negative Poisson’s ratios;

• There is no clear trend in the variation of mechanical properties with the length

of the acetylene chains can be made was the case for the flexynes.

In fact, the only conclusion that one may draw is that all reflexynes

investigated in this study exhibit a negative Poisson’s ratio. Similar results (for

the Young’s moduli and Poisson’s ratios) were also found in the published data.
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Furthermore, the results confirm that for all systems modelled, the moduli

are such that the shear on-axis modulus in the Y Z is extremely low (around

30 times lower than the on-axis Young’s moduli). As stated before, this results,

which is being reported for the first time, is a very important consideration

since it shows that in reality, these materials are expected to be very weak in

shear, a property which will reduce the material’s suitability for many practical

applications. Moreover, the reflexynes always exhibit a lower shear modulus then

the flexynes, which as noted above may explained by the fact that “bending” of

the acetylene chains is observed in the reflexynes but not in the flexynes.

It is also interesting to note that when comparing the (n,m)-flexynes with

the (n,m)-reflexynes one may note that in most cases, the flexynes exhibit a higher

in-plane on-axis Young’s modulus than the reflexynes. Furthermore, (i) the in-

plane on-axis Young’s moduli and shear modulus are much higher then the

Young’s modulus in the third direction or non Y Z-shear moduli, a property which

was explained in detail for the (1,4) systems and which apply for all (n,m) systems.

4.3. Conclusion

The results from these simulations clearly suggest that:

• The methodology we are using is comparable to the one used by other workers

and published in the literature and the results obtained are very similar;

• As in the case of the published data, for all the flexyne/reflexyne systems

modelled, our DREIDING force-field simulations always predict auxetic on-axis

behaviour for the reflexynes and conventional on-axis behaviour in the case of

the flexynes;

• Clear trends may be identified to describe how the mechanical properties of

the flexynes depend on the number of triple bonds in acetylene chains. No such

trends could be identified in the case of the reflexynes;

• In all cases, the shear on-axis modulus in the Y Z is extremely low (around 30

times lower than the on-axis Young’s moduli). As stated before, this finding,

which is being reported for the first time, is a very important consideration

since it shows that in reality, these materials are expected to be very weak in

shear, a property which will reduce the material’s suitability for many practical

applications.

5. The on-axis mechanical properties of 2D flexyne and

reflexyne polyphenylacetylene networks: An investigation

on the dependency of the simulated on-axis properties

on the force-field used8

In the previous sections we showed that we can successfully reproduce the

simulations reported in the literature by Evans [22] and Alderson [23]. In view of

8. Simulations on reflexynes using the PCFF force-field have already been reported in

another publication [24] and are included here only for the sake of completeness.
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all this, in this chapter we shall use the same method (albeit slightly modified)

in order to re-simulate the properties of (1,4)-flexyne and (1,4)-reflexyne using

various force-fields in an attempt to investigate the dependency, if any, of the

simulated mechanical properties on the force-field used. Apart from the DREIDING

force-field, which was used in the previous chapter, (as part of the validation

study), the force-fields which were chosen for this part of the dissertation were

the COMPASS [35, 36], CVFF 300 [37], UNIVERSAL [28] and PCFF [38] force-fields.

These force-fields were chosen since they are parameterised to deal with organic

systems.

This investigation will be carried out on all the flexynes and reflexynes,

i.e. (1,2)-, (1,4)-, (1,6)-, (2,2)-, (2,4)- and (2,6)-flexynes and (1,4)-, (1,5)-, (1,6)-,

(2,5)-, (2,6)- and (2,8)-reflexynes.

5.1. Simulations

The methodology used in this chapter was similar to the one employed in

the previous chapter, Script 1. The only two differences were that a “for each”

loop was introduced between lines 4 and 5 in order to repeat the script for all the

force-fields used in this study, whilst lines 31 to 43 were deleted since only the

second derivative method was employed.

5.2. Results and Discussion

All the simulations were completed successfully and the simulated values of

the Young’s moduli, Poisson’s ratios and Shear moduli for (1,4)-flexyne and (1,4)-

reflexyne by the various force-fields used in this study are shown in Table 7. The

(n,m)-flexynes and (n,m)-reflexynes investigated in this study also showed a good

correlation to the results9 published by Evans [22] and Alderson [23], a summary

of which is being reported graphically (see Figure 14).

These results clearly indicate that although the actual values of the simu-

lated properties are force-field dependent, the general trends in the results as iden-

tified in the previous chapter are force-field independent for a given system. For

example, Figure 14 and Figure 15 show that for (1,4)-flexyne and (1,4)-reflexyne

the mechanical properties obtained through all force-fields used in this study yield

similar results, and similarly for the other systems.

In particular we note that:

• Irrespective of the force-field used, all reflexynes are predicted to exhibit auxetic

on-axis behaviour in the Y Z plane whilst all flexynes with all force-fields are

predicted to be conventional on-axis in the Y Z plane;

• Irrespective of the force-field used, all the (n,m)-flexyne and (n,m)-reflexyne

have:

– Ex is considerably lower than Ey and Ez. As stated in the previous chapter,

this may be explained in terms of the bonding where in the Y Z plane the

flexynes/reflexynes are bonded together through strong covalent bonds while

9. These are reported in the Supplementary information in electronic format
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(a)

(b)

(c)

Figure 14. Plots showing the absolute values for (a) Young’s moduli, (b) Poisson’s ratios and

(c) shear moduli for (1,4)-flexyne as simulated by different force-fields

in the XZ and XY planes they are “loosely” connected together through

much weaker non-bond interactions;

– The relative magnitudes of Ey : Ez remain fairly constant (see Figure 14

and Figure 15 which illustrate this very clearly for (1,4)-flexyne and (1,4)-

reflexyne);

– Very low shear moduli in all planes with:

(a) A shear modulus very close to zero in the non Y Z plane meaning that

there is very little resistance for the layers to slip past each other. As

in the case of the Young’s moduli, this behaviour may be explained in
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(a)

(b)

(c)

Figure 15. Plots showing the absolute values for (a) Young’s moduli, (b) Poisson’s ratios and

(c) shear moduli for (1,4)-reflexyne as simulated by different force-fields

terms of the type of bonding present in the different planes i.e. the strong

covalent bonding in the Y Z plane and the weak non-bond interactions in

the XY and XZ planes. In fact, one would expect that these graphite-

like systems offer no resistance to shearing in the latter two planes as the

“infinite” layers making up these system would slide over each other;

(b) A low (but finite) shear modulus in the Y Z plane (when compared to

the on-axis Young’s modulus) indicating that these networks will shear

very easily. This is much more pronounced in the reflexynes than in the

flexynes.
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(a)

(b)

Figure 18. Plots showing the absolute values of Gzy (n,m)-flexynes (a) and (n,m)-reflexynes

(b) as simulated by the different force-fields

• The trends describing the variation of the mechanical properties with the length

of the acetylene chains as identified in the previous chapter with the DREIDING

force-field remain could also be found with all the other force-fields, i.e.:

– the Young’s moduli in the Z-direction increase whilst those in the Y -direction

decrease;

– the Poisson’s ratios are always positive however, an increase in the size of

the vertical and/or diagonal acetylene branches causes the Poisson’s ratio

to become more positive for loading in the Z-direction but less positive for

loading in the Y -direction;

– the in-plane shear modulus decreases as the size of the acetylene chains is

increased.

5.3. Conclusion

The simulations in this section suggest that despite the fact that the exact

magnitudes of the mechanical properties are dependent of the force-field, the

general properties of the flexyne and reflexyne systems identified in Chapters 3

and 4 using the DREIDING force-field were not artefacts of the simulations thus

adding confidence in the earlier results.
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6. The off-axis mechanical properties of 2D flexyne and

reflexyne polyphenylacetylene networks

In the previous chapter we showed through force-field based simulations

that irrespective of the force-field used, reflexyne networks exhibit on-axis negative

Poisson’s ratios, (i.e. auxetic behaviour), the exact magnitude of which depends

on the number of triple bonds in the acetylene chains, the force-field used, and even

(although to a smaller extent), on the method used to simulate the mechanical

properties (e.g. manual constant stress vs. second derivative method). It was

also very interesting to note that in some cases, the extent of auxeticity was

very high, for example in the case of (1,4)-reflexyne, the COMPASS force-field

predicted Poisson’s ratios νzy =−0.52 (The flexyne systems exhibit positive on-

axis Poisson’s ratios the exact magnitude of which depends on the number of

triple bonds in the acetylene chains and the force-field used.)

However, in this investigation (and all other investigations reported in the

literature), only the on-axis mechanical properties were measured.

In this section we investigate the off-axis mechanical properties, in particu-

lar, the off-axis mechanical properties in the Y Z-plane (the plane of the networks)

since no reference has been made to these properties as of yet.

6.1. Theory

The standard procedure to obtain the off-axes profiles for mechanical

properties for a full rotation around the X-axis one may make use of the 6×6

stiffness matrices C = [cmn], or rather, its parent, the fourth rank stiffness tensor.

This 3×3×3×3 fourth rank stiffness tensor cijkl with stiffness tensorial terms

cijkl (i, j, k, l∈{1, 2, 3}) relates to terms cmn (m, n∈{1, 2, . .. , 6}), the elements

of the 6×6 stiffness matrix in such a way that the stiffness tensorial terms cijkl
(i, j, k, l∈{1, 2, 3}) may be written in terms of cmn (m, n∈{1, 2, .. . , 6}) through

replacing pairs of suffixes in cijkl by single suffixes according to the following rule:

suffix pair in cijkl (i.e. ij or kl) 11 22 33 23,32 31,13 12,21

single suffix in cmn 1 2 3 4 5 6

Thus for example, c11 = c1111, c14 = c1123 = c1132, c45 = c2331 = c2313 =

c3231= c3213 and so on.

Having obtained the the fourth rank stiffness tensor cijkl describing the

mechanical properties in the original orthogonal co-ordinate system Ox123, this

is transformed to ci′j′k′l′ which describes the properties in a new orthogonal co-

ordinate system Ox′123, where Ox
′

123 is obtained from Ox123 through a simple

rotation by an angle ς ′ around the Ox1 direction. This transformation is carried

out using the tensor transformation rule:

ci′j′k′l′ = ai′iaj′jak′kal′lcijkl (i, j, k, l, i′, j′, k′, l′ ∈{1, 2, 3}) (8)
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where ai′i, aj′j , ak′k and al′l (i, j, k, l, i
′, j′, k′, l′ ∈ {1, 2, 3}) are the elements of

the transformation matrix:




1 0 0
0 cos(ς) sin(ς)
0 −sin(ς) cos(ς)



 (9)

The “transformed” Poisson’s ratio ν′23 may be obtained from ci′j′k′l′ by re-

obtaining the transformed 6×6 stiffness matrix C ′, inverting it to obtain the

transformed 6×6 compliance matrix S ′ from which the Poisson’s ratio ν′23 may

be obtained from:

ν′23=−
s′32
s′
22

(10)

Alternatively, to avoid the inversion, one may transform the compliance

matrix (or rather its parent the 4th rank compliance tensor), although in this

case, care must be taken as sometimes the transformation the terms of compliance

matrix to the terms of the compliance 4th rank tensor involve factors of 2 or 4.

However, in our study we are primarily interested a sub-section of the full

6×6 stiffness and compliance matrices, namely the 3×3 sub-matrix, which relate

solely to Y and Z directions. These 3×3 stiffness and compliance “sub-matrices”

relate stress to strain for a 2D system in the Y Z plane and are defined through:




σy
σz
τyz



=





c22 c23 c24
c32 c33 c34
c42 c43 c44









εy
εz
γyz



 &





εy
εz
γyz



=





s22 s23 s24
s32 s33 s34
s42 s43 s44









σy
σz
τyz





where the terms cij and sij in the 3×3 matrices refer to the respective terms in the

original 6×6 matrices. In such cases, the parent 4th rank tensor is 2×2×2×2

and, for example, compliance tensor sijkl (i, j, k, l ∈ {1, 2}) relate to the sub-

matrix S above through:

s1111= s22 s1122= s23
s2211= s32 s2222= s33
2s1211=2s2111= s42 2s1222=2s2122= s43

2s1112=2s1121= s24
2s2212=2s2221= s34
4s1212=4s1221=4s2112=4s2121= s44

and in this case, the transformation is carried out using the tensor transformation

rule:

si′j′k′l′ = ai′iaj′jak′kal′lsijkl (i, j, k, l, i′, j′, k′, l′ ∈{1, 2})

where ai′i, aj′j , ak′k and al′l (i, j, k, l, i
′, j′, k′, l′ ∈ {1, 2}) are the elements of

the transformation matrix:
(

cos(ς) sin(ς)
−sin(ς) cos(ς)

)

6.2. Results and Discussion

The method used to obtain the off-axis plots will be used to transform the

3×3 compliance sub-matrix which was calculated through the simulations in the
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previous chapters for the various (n,m)-flexyne and (n,m)-reflexyne using various

force-fields.

In the case on (n,m) = (1,4) we calculated the off-axis Poisson’s ratio and

moduli from the compliance data (sij) simulated an reported in Chapter 3–410.

Plots of these properties against ζ are given in Table 8 and Table 9.

These plots clearly show some very interesting features namely that:

1. Despite various difference in the actual values of the on-axis properties, the

profiles of the off-axis properties (i.e. the shapes of the off-axis plots) are

virtually identical;

2. The Poisson’s ratios are highly dependent on the direction of loading and:

(a) In the case of (1,4)-reflexyne, auxeticity is only observed for loading on-

axis or in directions very close to it. In fact, these plots suggest that when

(1,4)-reflexyne is loaded in the Y Z plane at more than c. 10deg on-axis, the

in-plane Poisson’s ratios becomes positive reaching a maximum positive for

loading at c. 45deg off-axis. This is very significant as it suggests that if

synthesised, (1,4)-reflexyne will only be auxetic for loading in certain very

specific directions;

(b) In the case of (1,4)-flexyne, the Poisson’s ratios will also become more

positive reaching a maximum at c. 45deg off-axis. However, in this case,

the maximum positive Poisson’s ratio is always less than the maximum

positive Poisson’s ratios in (1,4)-reflexyne.

3. The moduli are such that for both (1,4)-flexyne and (1,4)-reflexyne, maximum

Young’s moduli are exhibited for loading on-axis whilst maximum shear moduli

are exhibited for loading at 45deg off-axis.

It was also interesting to note that in the cases when the on-axis data

in tension and compression were different, the off-axis plots were such that the

tension/compression plots were slightly non-symmetric where “average of these

plots” results in a symmetric plot of a shape similar to the plots obtained from

data obtained using methods such as the second derivative method. This is very

significant as it confirms the conclusion made in Chapters 3 and 4 that the second

derivative method offers the best “quality of results : simulation time” ratio,

and that in fact, to a first approximation, the data obtained using this method

described the behaviour of the material in both tension and compression.

We also simulated the off-axis plots of the other (n,m)-flexyne/reflexyne

systems using the second derivative data obtained in Chapter 3 & 4 and the

off-axis Poisson’s ratios plots are given in Figure 19 and Figure 20.

These off-axis Poisson’s ratios in Figure 19 and Figure 20 show some very

interesting features:

10. The data in Chapters 3and 4 was obtained using the DREIDING force-field through

various methods (second derivative, automated constant strain, manual constant stress, etc.)

whilst the data in Chapter 5 was obtained using various force-fields (CVFF, Universal, PCFF

and COMPASS) using the second derivative method.
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Table 8. Plots showing the νyz for (1,4)-flexyne and (1,4)-reflexyne

(1,4)-flexyne νyz (1,4)-reflexyne νyz

Structure

DREIDING

force-field

second

derivative

method

DREIDING

force-field

constant

strain

method

DREIDING

force-field

manual

constant

stress

(compression)

DREIDING

force-field

manual

constant

stress

(tension)
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Table 8 – continued. Plots showing the νyz for (1,4)-flexyne and (1,4)-reflexyne

PCFF

force-field

second

derivative

method

COMPASS

force-field

second

derivative

method

UNIVERSAL

force-field

second

derivative

method

CVFF

force-field

second

derivative

method
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Table 9. A graph for Ey (black) and Gzy (gray) for (1,4)-flexyne and (1,4)-reflexyne

(1,4)-flexyne νyz (1,4)-reflexyne νyz

Structure

DREIDING

force-field

second

derivative

method

DREIDING

force-field

constant

strain

method

DREIDING

force-field

manual

constant

stress

(compression)

DREIDING

force-field

manual

constant

stress

(tension)
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Table 9 – continued. A graph for Ey (black) and Gzy (gray) for (1,4)-flexyne and

(1,4)-reflexyne

PCFF

force-field

second

derivative

method

COMPASS

force-field

second

derivative

method

UNIVERSAL

force-field

second

derivative

method

CVFF

force-field

second

derivative

method
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(a)

(b)

(c)

Figure 19. Off-axis plots for the νyz (a) (1,2)- (b) (1,4)- (c) (1,6)- flexyne

First (and most significantly), the plots show that the absence of auxeticity

in the Y X plane for loading off-axis is a common feature of all the reflexynes.

In fact, irrespective of the reflexyne system or force-field used, auxeticity is only

exhibited for loading on axis or in directions ± c. 10deg to it. Otherwise, the

reflexynes exhibit positive Poisson’s ratios, which in most cases approaches −1

when loading at c. 45deg off-axis. This is very significant as it clearly shows that

the potential of these systems as auxetics for use in practical applications is very

limited.

The plots also show that (2,2)-flexyne exhibits (nearly) in-plane isotropy,

i.e. the Poisson’s ratio is independent of the direction of loading. This prop-
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(d)

(e)

(f)

Figure 19 – continued. Off-axis plots for the νyz (d) (2,2)- (e) (2,4)- (f) (2,6)- flexyne

erty is the direct result of the symmetry of (2,2)-flexyne (hexagonal). Regret-

tably, the Poisson’s ratio of this system is positive, as expected. The other

flexynes exhibit positive in-plane Poisson’s ratios for loading in any direction

in plane.

6.3. Conclusions

The in-plane properties of the flexyne and reflexyne systems are very

dependent on the direction of loading. Most importantly, these calculations show

that the predicted in-plane on-axis auxeticity is lost when the reflexynes are loaded

off-axis.
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(a)

(b)

(c)

Figure 20. Off-axis plots for the νyz (a) (1,4)- (b) (1,5)- (c) (1,6)- reflexyne

7. Final Conclusions and Further Research

The main scope of the paper was to make use of empirical modelling

techniques in order to derive the full set of mechanical properties of the periodic

2D polyphenylacetylene networks known as flexyne and reflexyne. In particular

we attempted to:

• confirm the results obtained from previous studies, which suggested that (n,m)-

flexynes exhibit a positive Poisson’s ratio on axis (i.e. conventional) whilst

(n,m)-reflexynes exhibit a negative Poisson’s ratio on axis (i.e. auxetic);
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(d)

(e)

(f)

Figure 20 – continued. Off-axis plots for the νyz (d) (2,5)- (e) (2,6)- (f) (2,8)- reflexyne

• analyse behaviour of these networks when subjected to shear loads

• analyse the off-axis mechanical properties, particularly the in-plane off-axis

Poisson’s ratios.

In fact, the first part of the present study was meant to be a validation of

our methodology on (1,4)-flexyne and (1,4)-reflexyne and this was accomplished

by following a similar methodology employed in the past studies [22, 23] i.e. the

DREIDING force-field was used. However, our methodology deviated slightly from

the other methods with the inclusion of partial charges on each atom (using
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Charge Equilibration) and by using various suitable methods for calculating

the mechanical properties. From the results obtained, which were similar to the

published results, we concluded that in accordance with previous results, the re-

entrant (1,4)-reflexyne 2D polyphenylacetylene network is indeed auxetic on-axis

whilst (1,4)-flexyne was conventional. We also found that the magnitudes of the

simulated on-axis Young’ moduli and Poisson’s ratios were comparable to those

published in the literature. However, we also identified small differences in the

actual values of the mechanical properties which were found to be dependent on

the method used, and more importantly, dependent on whether the system was

analysed in “tension” or in “compression”. In view of this, we found that for

optimal quality it would be best to use a manual constant stress method rather

than an automated one. However, since this method was very time consuming and

the differences in the results as obtained from the different methods were relatively

low, we further concluded that the “Second Derivative Method” (a method where

results were found to be close to the average of the tension/compression data)

is the method which gives the best “results : simulation time” ratio. Thus, this

method was used in all subsequent studies performed in this dissertation.

We then simulated the properties of other (n,m)-flexynes/reflexynes using

the DREIDING force-field and, in analogy to published work, we identified that

all the reflexynes exhibited on-axis auxetic behaviour in the Y Z plane whilst

the flexynes exhibited on-axis conventional behaviour. Furthermore, we identified

clear trends which describe a relationship between the mechanical properties and

the number of triple bonds in acetylene chains for flexynes. No such trends could

be identified for the reflexynes, once again, in analogy to previous work. This

comparability with previous work was very important not only because it validates

our modelling methodology, but also because it ensures that any new data derived

for these systems will fit well with the existing published data.

We also found that the Young modulus (Ex) is considerably lower than Ey
and Ez. for all flexynes and reflexynes studied using any force-field. This may be

attributed to the fact that the particle interactions are mainly of the non-bond

type (i.e. weak) in the XZ and XY planes while the Y Z plane is dominated by

strong covalent bonds.

Finally, we also reported for the first time values for the shear moduli

which we have found to be very low (at least an order of magnitude lower than

the Young’s moduli). This discovery is of great importance as it highlights a very

dominant limitation for these materials in practical applications.

We also extended our study to determine whether the results obtained with

the DREIDING force-field were force-dependent or independent, a study which

is very important when studying novel materials where no experimental data is

available for comparison with the simulations. In this study we used the CVFF300,

COMPASS, PCFF and UNIVERSAL force-fields, four force-fields which like the

DREIDING force-field are adequately parameterised to model systems with phenyl

rings and acetylene chains. In this study we found that despite minor differences
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in actual values of the simulated mechanical properties when obtained by different

force-fields, the general trends identified by the study using the DREIDING force-

field were still evident thus suggesting force-field independence of our results. For

example, all the force-fields used suggest that reflexynes are auxetic on-axis in

the Y Z plane whilst the flexynes are conventional on axis. Another interesting

conclusion that we draw regarding the Young’s modulus is that for each structure,

irrespective of the force-field used, the ratio of the simulated Ey: Ez appears to

remain fairly constant. Low (and sometimes almost negligible) shear moduli were

reported using all force-fields. Finally, all force-fields suggest that in the case of

the (n,m)-flexynes the Poisson’s ratio become less positive for loading in the Y -

direction upon increasing the size of the vertical/diagonal acetylene branches.

This is accompanied by an increase in the Poisson’s ratio for loading in the

Z-direction and a decrease in the in-plane shear modulus. The results for the

reflexynes did not exhibit a consistent trend and as such no reliable conclusions

could be drawn.

The final part of the paper involved a study of the off-axis behaviour of the

flexynes and reflexynes. This is “new ground” in the study of these systems since,

although numerous publications have emerged on the subject in the last few years,

as of yet no reference has been made to these off-axis mechanical properties. From

our results we concluded that in general (with the expectation of (2,2)-flexyne

which exhibits hexagonal symmetry), the mechanical properties, including the

Poisson’s ratios are highly dependent on the directions of loading. We found that

the Poisson’s ratios are always positive in the case of the flexynes, although on

axis the Poisson’s ratio is at its lowest. In the case of the reflexynes, we found

that although all the systems modelled were auxetic in the Y Z-plane on-axis,

this auxeticity is lost when loading off-axis. In fact, we found that there are very

narrow regions where auxeticity is present. We also found that profiles of the in-

plane off axis properties for the same structures were very similar when generated

via different force-fields thus once again confirming force-field independence of our

simulated results.

All this is once again very significant and of practical importance as it

shows that although many reports have been made emphasising the potential of

these systems as superior materials in many practical application in view of their

auxeticity, (e.g. as “smart filters” due to their adjustable pore size on tension

and compression), once must now re-examine these claims as such enhanced

properties will only be exhibited for loading in very specific directions. All this is in

stark contrast to the properties which are exhibited by the polyphenylacetylene-

n-triangles proposed by Grima [39] which are isotropic in plane implying that

they can be stretched in any direction in order to bring out their auxetic

character. Thus in view of all this the latter would be more appealing in practical

applications.

Despite all these “negative” results on the reflexynes, in view of their low

shear moduli and off-axis properties, it must be stated that this work has added
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more confidence in the claim that “reflexynes are auxetic on-axis” since we have

now shown that this result is “independent” of the force-field used in the study.

It is also important to note that this study cannot be treated as the “final”

study on these polyphyenylacetylene systems. Apart from the fact that from

the experimental aspect, much still needs to be done if these systems are to

be synthesised and tested, even from the modelling side, despite the many new

developments made in this dissertation, there are still many aspects which need

to be investigated further.

For example, as regards molecular modelling, there is a lot of room for

further investigations particularly since in the case where empirical investigations

are carried out the systems are treated as balls and springs – and as a result

of this the electrons are ignored. These systems have very interesting electronic

properties for example they are expected to exhibit conjugation, hence these

polymers have applications as conductive polymers. Such study involving electrons

must be performed using a quantum mechanically based approach which are much

more computationally intensive.

Additionally, one might consider modelling of a systems made from a finite

“sections” of these networks in an attempt to simulate a more realistic system

where the sample is not a perfect single crystal. The study can also be extended

to newer and better parameterised force-fields as they become available.

Regarding the off-axis properties, another source of further work could be

a more detailed investigation in these properties, for example, by studying them

in the other planes.

Furthermore, it is important to note that flexynes and reflexynes are not

the only polyphenylacetylene networks that can be constructed. The methodology

used in this dissertation may also be used (perhaps with some modifications)

on other organic networks of a similar nature, such as 3D polyphenylacetylene

networks with a (10,3)-b topology.
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