PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dry ice blasting as an effective way of industrial pollutants removal

Identyfikatory
Warianty tytułu
PL
Dry ice blasting jako metoda efektywnego usuwania zabrudzeń przemysłowych
Języki publikacji
EN
Abstrakty
EN
Presence of the pollutants in various industrial sectors is undesired. Residual dirt may lead to serious consequences like devices overheating, damage, increased risk of fire or efficiency drop. That is why a wide range of industrial pollutants cleaning methods were developed and used. Among the physical blasting methods the dry ice blasting can be enumerated. This method consists of polluted surface cleaning with the high-speed air-dry ice mixture. Blasting process is supported by heat transfer related phenomena and carbon dioxide sublimation which correspond to easier dirt removal. Described method is dedicated for various pollutants types removal form inorganic dust up to oily organic, which was confirmed in the experiments described in the paper.
PL
Obecność zanieczyszczeń w różnych sektorach przemysłu jest zjawiskiem niepożądanym. Zalegające zabrudzenia mogą prowadzić do poważnych konsekwencji, takich jak przegrzewanie, awarie urządzeń, zwiększone ryzyko pożaru czy obniżenie sprawności. Dlatego opracowano i wdrożono wiele metod usuwania zanieczyszczeń przemysłowych. Wśród fizycznych metod ściernych można wymienić piaskowanie suchym lodem. Metoda ta polega na czyszczeniu zanieczyszczonych powierzchni mieszaniną suchego lodu i powietrza o dużej prędkości. Proces ścierny wspomagany jest zjawiskami związanymi z wymianą ciepła oraz sublimacją dwutlenku węgla, co przekłada się na łatwiejsze usuwanie zabrudzeń. Opisana metoda jest dedykowana do usuwania różnego rodzaju zanieczyszczeń od pyłu nieorganicznego aż po oleiste zabrudzenia organiczne, co zostało potwierdzone w doświadczeniach opisanych w artykule
Wydawca
Czasopismo
Rocznik
Tom
Strony
97--104
Opis fizyczny
Bibliogr. 41 poz., fig., tab.
Twórcy
  • Institute of Heat Engineering, Warsaw University of Technology
  • Institute of Heat Engineering, Warsaw University of Technology
  • 3N Solutions Sp. z o. o.
Bibliografia
  • [1] 3NS 2016. Czyszczenie oraz konserwacja urządzeń i instalacji elektrycznych. WDI.
  • [2] Barnett, D.M. 1995. CO2 (dry-ice) cleaning system. NASA Conference Publication (1995), 391–398.
  • [3] Chen, J.P. et al. 2003. Optimization of membrane physical and chemical cleaning by a statistically designed approach. Journal of Membrane Science. 219, 1–2 (2003), 27–45. DOI:https://doi.org/10.1016/S0376- 7388(03)00174-1.
  • [4] Czyszczenie instalacji elektrycznej i urządzeń: https://www.suchylod.net/. Accessed: 2020-10-02.
  • [5] Dong, S. et al. 2013. Study on the mechanism of adhesion improvement using dry-ice blasting for plasma-sprayed Al2O3 coatings. Journal of Thermal Spray Technology (2013), 213–220.
  • [6] Dong, S. and Liao, H. 2016. Substrate pre-treatment by dry-ice blasting and cold spraying of titanium. Surface Engineering. 0844, July (2016), 1–7. DOI:https://doi.org/10.1080/02670844.2016.1210894.
  • [7] Dong, S.J. et al. 2012. Modelling of dry ice blasting and its application in thermal spray. Materials Research Innovations. 16, 1 (2012), 61–66. DOI:https://doi.org/10.1179/1433075X11Y.0000000015.
  • [8] Elbing, F. et al. 2003. Dry ice blasting as pretreatment of aluminum surfaces to improve the adhesive strength of aluminum bonding joints. International Journal of Adhesion and Adhesives. 23, 1 (2003), 69–79. DOI:https://doi.org/10.1016/S0143-7496(02)00083-0.
  • [9] Fong, C. 1977. Sandblasting with pellets of material capable of sublimation. 4,038,786. 1977.
  • [10] Górecki, J. et al. 2019. The influence of geometrical parameters of the forming channel on the boundary value of the axial force in the agglomeration process of dry ice. MATEC Web of Conferences. 254, (2019), 05001. DOI:https://doi.org/10.1051/matecconf/201925405001.
  • [11] Hills, M.M. 1995. Carbon dioxide jet spray cleaning of molecular contaminants. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 13, 30 (1995), 30–34. DOI:https://doi.org/10.1116/1.579439.
  • [12] Kumar, P.G.S. 2013. Dry Ice Cleaning to Improvise Dielectric Features of High Voltage Windings in Turbine Generators. 2013 IEEE 1st International Conference on Condition Assessment Techniques in Electrical Systems (CATCON). (2013), 23–28. DOI:https://doi.org/10.1109/CATCON.2013.6737468.
  • [13] Liebl, D.S. 1993. Industrial Cleaning Source Book. University of Wisconsin, Solid and Hazardous Waste Education Center.
  • [14] Linde Gas 2014. The coolest cleaning method you’ll ever use. Dry ice blasting with CRYOCLEAN ® Brochure.
  • [15] Liu, Y. et al. 2011. Effect of Particle Impact on Surface Cleaning Using Dry Ice Jet Effect of Particle Impact on Surface Cleaning Using. Aerosol Science and Technology. 6826, (2011). DOI:https://doi.org/10.1080/02786826.2011.603769.
  • [16] Liu, Y.H. et al. 2012. Particle removal process during application of impinging dry ice jet. Powder Technology. 217, (2012), 607–613. DOI:https://doi.org/10.1016/j.powtec.2011.11.032.
  • [17] Máša, V. et al. 2014. Decrease in consumption of compressed air in dry ice blasting machine. Chemical Engineering Transactions. 39, Special Issue (2014), 805–810. DOI:https://doi.org/10.3303/CET1439135.
  • [18] Máša, V. and Kuba, P. 2016. Efficient use of compressed air for dry ice blasting. Journal of Cleaner Production. 111, (2016), 76–84. DOI:https://doi.org/10.1016/j.jclepro.2015.07.053.
  • [19] Maszyny i urządzenia: 2018. http://www.pressovac-polska.pl/maszyny-i-urządzenia.html. Accessed: 2018-12- 10.
  • [20] Otto, C. et al. 2011. Physical Methods for Cleaning and Disinfection of Surfaces. Food Eng Rev. (2011), 171– 188. DOI:https://doi.org/10.1007/s12393-011-9038-4.
  • [21] Prassler, E. et al. 2000. A short history of cleaning robots. Autonomous Robots. 9, 3 (2000), 211–226. DOI:https://doi.org/10.1023/A:1008974515925.
  • [22] Sherman, R. 2007. Carbon dioxide snow cleaning. Particulate Science and Technology. 25, 1 (2007), 37–57. DOI:https://doi.org/10.1080/02726350601146424.
  • [23] Sherman, R. 1991. Dry surface cleaning using CO2 snow. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. 9, 4 (1991), 1970. DOI:https://doi.org/10.1116/1.585390.
  • [24] Sherman, R. and Adams, P. 1996. Carbon dioxide snow cleaning—the next generation of clean. Precision Cleaning Proceedings. (1996), 271–300.
  • [25] Spur, G. et al. 1999. Dry-ice blasting for cleaning: Process, optimization and application. Wear. 233–235, (1999), 402–411. DOI:https://doi.org/10.1016/S0043-1648(99)00204-5.
  • [26] Stratford, S. 1999. Dry ice blasting for paint stripping and surface preparation. Metal Finishing. 97, 5 (1999), 481–487. DOI:https://doi.org/10.1016/S0026-0576(99)80815-0.
  • [27] Uhlmann, E. et al. 2001. Development of flexible automatic disassembly processes and cleaning technologies for the recycling of consumer goods. Proceedings of the 4th IEEE International Symposium on Assembly and Task Planning Soft Research Park (Fukuoka, Japan, 2001), 442–446.
  • [28] Uhlmann, E. et al. 2009. Dry Ice Blasting – Energy-Efficiency and New Fields of Application. Engineering Against Fracture - Proceedings of the 1st Conference. (2009), 399–400. DOI:https://doi.org/10.1007/978-1- 4020-9402-6_32.
  • [29] Uhlmann, E. and Hollan, R. 2015. Blasting with solid carbon dioxide - Investigation of thermal and mechanical removal mechanisms. Procedia CIRP. 26, (2015), 544–547. DOI:https://doi.org/10.1016/j.procir.2014.07.064.
  • [30] Witte, A.K. et al. 2017. Investigation of the potential of dry ice blasting for cleaning and disinfection in the food production environment. LWT - Food Science and Technology. 75, (2017), 735–741. DOI:https://doi.org/10.1016/j.lwt.2016.10.024.
  • [31] www.alpina-belgium.com: 2021. www.alpina-belgium.com. Accessed: 2021-02-08.
  • [32] www.bgclean.co.uk: 2021. www.bgclean.co.uk. Accessed: 2021-02-05.
  • [33] www.corrosionpedia.com: 2016. www.corrosionpedia.com. Accessed: 2021-02-05.
  • [34] www.cryoblaster.com: www.cryoblaster.com. Accessed: 2019-02-09.
  • [35] www.duesenprofi.de: www.duesenprofi.de. Accessed: 2019-02-10.
  • [36] www.eximotek.com: www.eximotek.com. Accessed: 2019-02-10.
  • [37] www.kaercher.com: 2020. www.kaercher.com. Accessed: 2020-05-05.
  • [38] www.ormonde.eu: 2021. www.ormonde.eu. Accessed: 2021-02-05.
  • [39] www.wire-wizard.com: www.wire-wizard.com. Accessed: 2019-02-09.
  • [40] Zhang, X. and Yamaguchi, H. 2011. An experimental study on heat transfer of CO2 solid-gas two phase flow with dry ice sublimation. International Journal of Thermal Sciences. 50, 11 (2011), 2228–2234. DOI:https://doi.org/10.1016/j.ijthermalsci.2011.05.019.
  • [41] Zhou, W. et al. 2012. On the mechanism of insulator cleaning using dry ice. IEEE Transactions on Dielectrics and Electrical Insulation. 19, 5 (2012), 1715–1722. DOI:https://doi.org/10.1109/TDEI.2012.6311520.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b1a7435-adcf-4a64-9cd5-92739b8bd114
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.