PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Smart district heating networks in the era of energy transformation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
District heating, which accounts for half of the EU's energy consumption, still relies heavily on fossil fuels. This causes emissions of dust and greenhouse gases and into the atmosphere and leads to negative climate changes. For this reason, European Union countries have been implementing a climate and energy policy for many years, which in the area of heating is aimed at making it more efficient and sustainable. This requires the introduction of low-carbon technologies and the reduction of fossil fuel consumption by increasing the share of renewable energy sources. Modern, efficient and smart heating systems should guarantee reliable heat supply while reducing the environmental impact. The article discusses the direction of change and development of district heating systems through the introduction of innovative technologies. The new generations of 4GDH and 5 GDH district heating systems are described and the benefits of their use are indicated. The concept of smart district heating networks, their structure and the advantages of their implementation are discussed. The possibilities of creating smart energy systems using renewable energy sources and heat storage technologies were also indicated. The activities of Polish district heating companies in the introduction of smart heat networks are presented, based on research conducted.
Wydawca
Rocznik
Strony
58--66
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
  • Czestochowa University of Technology, Poland
Bibliografia
  • 1. Allen, A., Henze, G., Baker, K., Pavlak, G., 2020. Evaluation of low-exergy heating and cooling systems and topology optimization for deep energy savings at the urban district level, Energy Conversion and Management, vol. 222, 113106. DOI: 10.1016/j.enconman.2020.113106.
  • 2. Ancona, M.A., Branchini, L., De Pascale, A., Melino, F., 2015. Smart District Heating: Distributed Generation Systems’ Effects on the Network, Energy Procedia, vol. 75, 1208-1213, DOI: 10.1016/j.egypro.2015.07.157.
  • 3. Bach, B., Werling, J., Ommen, T., Münster, M., Morales, J.M., Elmegaard, B., 2016. Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen, Energy, 107, 321-334, DOI: 10.1016/j.energy.2016.04.029.
  • 4. Bamisile, O., Huang, Q., Dagbasi, M., Adebayo, V., Adun, H., Hu, W., 2020. Steadystate and process modeling of a novel wind-biomass comprehensive energy system: An energy conservation, exergy and performance analysis, Energy Conversion and Management, 220, 113139, DOI: 10.1016/j.enconman.2020.113139.
  • 5. Bloess, A., Schill, W.P., Zerrahn, A., 2018. Power-to-heat for renewable energy integration: Technologies, modeling approaches, and flexibility potentials, Applied Energy, 212, 1611-1626, DOI: 10.1016/j.apenergy.2017.12.073.
  • 6. European Commission, 2011. Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions. Smart Grids: from innovation to deployment. Access: https://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0202:FIN:EN:PDF.
  • 7. European Commission, 2016. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: An EU Strategy on Heating and Cooling. Access: https: //ec.europa.eu/transparency/regdoc/rep/1/2016/EN/1-2016-51-EN-F1- 1.PDF.
  • 8. Gao, L., Cui, X., Ni, J., Lei, W., Huang, T., Bai, C., Yang, J., 2017. Technologies in Smart District Heating System. Energy Procedia, 142, 1829-1834. DOI: 10.1016/j.egypro.2017.12.571.
  • 9. https://www.icax.co.uk/image_Fifth_Generation_Heat_Networks.html
  • 10. Imran, M., Usman, M., Im, Y.H., Park, B.S., 2017. The feasibility analysis for the concept of low temperature district heating network with cascade utilization of heat between networks. Energy Procedia, 116, 4-12. DOI: 10.1016/j.egypro.2017.05.050.
  • 11. Kavvadias, K., Jiménez-Navarro, J.P., Thomassen, G., 2019. Decarbonising the EU heating sector - Integration of the power and heating sector, EUR 29772 EN, Publications Office of the European Union, Luxembourg, 2019, ISBN 978-92-76-08386-3, DOI:10.2760/943257, JRC114758.
  • 12. Komosa, M.K., Kiedrowski, W.I., 2013. Inteligentne systemy informatyczne dla koncesjonowanego sektora ciepłowniczego, Ciepłownictwo, Ogrzewnictwo, Wentylacja, T. 44, nr 2, 47-52.
  • 13. Kuczyński, T., Ziembicki, P., 2012. Inteligentne systemy ciepłownicze zintegrowane w ramach SMART GRID, Ciepłownictwo, Ogrzewnictwo, Wentylacja, 43/9, 360-364.
  • 14. Ludynia, A., 2014. Zastosowanie smart grids w ciepłownictwie, Polityka Energetyczna, Tom 17, Zeszyt 1, s. 69-84.
  • 15. Lund, H., Østergaard, P. A., Connolly, D., Ridjan, I., Mathiesen, B. V., Hvelplund, F., Thellufsen, J. Z., & Sorknæs, P., 2016. Energy Storage and Smart Energy Systems, International Journal of Sustainable Energy Planning and Management, 11, 3-14, DOI: 10.5278/ijsepm.2016.11.2
  • 16. Lund, H., Østergaard, P.A., Nielsen, T.B., Werner, S., Thorsen, J.E., Gudmundsson, O., Arabkoohsar, A., Mathiesen, B.V., 2021. Perspectives on fourth and fifth generation district heating, Energy, vol. 227(C), 120520, DOI: 10.1016/j.energy.2021.120520.
  • 17. Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J.E., Hvelplund, F., Mathiesen, B.V., 2014. 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems, Energy, 68, 1-11. DOI: 10.1016/j.energy.2014.02.089.
  • 18. Mathiesen, B. V., Bertelsen, N., Schneider, N. C. A., García, L. S., Paardekooper, S., Thellufsen, J. Z., & Djørup, S. R., 2019. Towards a decarbonised heating and cooling sector in Europe: Unlocking the potential of energy efficiency and district energy. Aalborg Universitet.
  • 19. Millar, M.-A., Yu, Z., Burnside, N., Jones, G., Elrick, B., 2021. Identification of key performance indicators and complimentary load profiles for 5th generation district energy networks, Applied Energy, Elsevier, vol. 291(C), 116672. DOI: 10.1016/j.apenergy.2021.116672.
  • 20. Ministry of Climate and Environment, 2021. Energy Policy of Poland until 2040. https://www.gov.pl/web/klimat/polityka-energetyczna-polski
  • 21. Olsthoorn, D., Haghighat, F., Mirzaei, P.A., 2016. Integration of storage and renewable energy into district heating systems: A review of modelling and optimization, Solar Energy, 136, 49–64, DOI: 10.1016/j.solener.2016.06.054.
  • 22. Rak, A., 2016. Narzędzia informatyczne do zarządzania i optymalizacji pracy systemu ciepłowniczego, Zeszyty Naukowe UE w Katowicach, 308, 115-127.
  • 23. Wiśniewski, G., Więcka, A., Kawalak, T., Tokarczyk, P., Gręda, D., 2019. OZE i magazyny ciepła w polskim ciepłownictwie, Instytut Energetyki Odnawialnej, Warszawa, https://www.teraz-srodowisko.pl/media/pdf/aktualnosci/7118-OZE-wsystemach-cieplowniczych-IEO.pdf.
  • 24. Wojdyga, K., Chorzelski, M., 2017. Chances for polish district heating systems, Energy Procedia, vol. 116, 106-118, DOI: 10.1016/j.egypro.2017.05.059.
  • 25. Wrzalik, A., 2021. Corporate Social Responsibility of Heating Companies in Poland in the Context of Sustainable Development, Conference System Safety: Human - Technical Facility - Environment, vol. 3, 329-336, doi:10.2478/czoto-2021-0035.
  • 26. Wrzalik, A., 2019. Innovative Solutions in the Process of Heat Supply, Conference Quality Production Improvement – CQPI, vol.1, 155-161, DOI: 10.2478/cqpi-2019- 0021.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b16d7b0-7d0f-4452-8f92-7023cb82d706
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.