PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Tin (Sn) Addition on the Corrosion Behavior of Hydroxyapatite (HAP) Coated Mg/MgSn Alloys using Different Coating Methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the effect of tin (Sn) addition on the corrosion behavior of hydroxyapatite (HAP) coated Magnesium (Mg)/MgSn alloys by using two different coating methods. Mg/Mg alloys have gained significant attention in recent years due to their lightweight, high strength, and potential for use in a wide range of industrial applications. However, their corrosion properties during cathodic reactions with abundant hydrogen evolution have limited their widespread use, particularly in biomedical applications. In this study, pure Mg, Mg2Sn, Mg3Sn, Mg4Sn, and Mg5Sn alloys were prepared by powder metallurgy method. Then samples were coated by two different methods, dip-coating and electro-deposition. Potentiodynamic polarization and hydrogen evolution reaction analysis were performed to evaluate the corrosion rate and the hydrogen volume released from the alloys. The results indicate that the addition of Sn does not significantly increase the corrosion resistance of MgSn alloys. However, the current density and hydrogen evolution of the alloys are apparently improved after the coating process. The better corrosion resistance was observed for the Mg with higher composition, which are Mg4Sn and Mg5Sn. Overall, the study demonstrates that coating HAP onto the surface of MgSn alloys is able to improve their corrosion behavior and suppress the hydrogen evolution rate (HER) of the MgSn alloys. This improvement in other ways will increase their potential for industrial applications specifically in biomedical applications.
Twórcy
  • Universiti Malaysia Perlis, Faculty of Chemical Engineering & Technology, Malaysia
  • Universiti Malaysia Perlis, Center of Excellence Geopolymer & Green Technology, Malaysia
  • Universiti Malaysia Perlis, Faculty of Chemical Engineering & Technology, Malaysia
  • Universiti Malaysia Perlis, Faculty of Chemical Engineering & Technology, Malaysia
  • Universiti Malaysia Perlis, Faculty of Chemical Engineering & Technology, Malaysia
  • King Mongkut’s University of Technology, Faculty of Engineering, Biological Engineering Program, Thonburi, Bangkok 10140, Thailand
  • Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
Bibliografia
  • [1] S. Amukarimi, M. Mozafari. Biodegradable magnesium‐based biomaterials: An overview of challenges and opportunities. Med-Comm 2 (2), 123-144 (2021). DOI: https://doi.org/10.1002/mco2.59
  • [2] A.B. Johnson, C.D. Smith, E.F. Williams, Advances in Biodegradable Magnesium Alloys for Medical implants. Journal of Biomaterials Science: Polymer Edition 33 (15), 1801-1822 (2022). DOI: https://doi.org/10.3390/met12091500
  • [3] S.V. Satya Prasad, S.B. Prasad, K. Verma, K.M. Raghvendra, V. Kumar, S. Singh, The role and significance of Magnesium in modern day research - A review. Journal of Magnesium and Alloys 10, 1, 1-61 (2022). DOI: https://doi.org/10.1016/j.jma.2021.05.012
  • [4] M. Echeverry-Rendón, L.F. Berrio, S.M. Robledo, J.A. Calderón, J.G. Castaño, F. Echeverría, Corrosion Resistance and Biological Properties of Pure Magnesium Modified by Peo in Alkaline Phosphate Solutions. Corros. Mater. Degrad. 4 (2), 196-211 (2023). DOI: https://doi.org/10.3390/cmd4020012
  • [5] D.B. Panemangalore, R. Shabadi, M. Gupta, L. Lesven, Microstructure and Corrosion Behavior of Extruded Mg-Sn-Y Alloys. Metals 11, 1095 (2021). DOI: https://doi.org/10.3390/met11071095
  • [6] W. Jiang, J. Wang, W. Zhao, Q. Liu, D. Jiang, S. Guo, Effect of Sn addition on the mechanical properties and bio-corrosion behawior of cytocompatible Mg-4Zn based alloys. Journal of Magnesium and Alloys 7, 1, 15-26 (2019). DOI: https://doi.org/10.1016/j.jma.2019.02.002
  • [7] X. Chen, Y. Zhang, M. Cong, Y. Lu, X. Pi, Effect of Sn content on microstructure and tensile properties of as-cast and as-extruded Mg-8Li-3Al-(1,2,3)Sn alloys. Transactions of Nonferrous Metals Society of China 30, 8, 2079-2089 (2020). DOI: https://doi.org/10.1016/S1003-6326(20)65362-6
  • [8] X. Gu, W. Zhou, Y. Zheng, L. Dong, Y. Xi, D. Chai, Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/Ha composites. Mater. Sci. Eng. C. 30, 827-832 (2010). DOI: https://doi.org/10.1016/j.msec.2010.03.016
  • [9] Z. Zhen, T. Xi, Y. Zheng, L. Li, L. Li, In vitro study on Mg-Sn-Mn alloy as biodegradable metals. Mater. Sci. Technol. 30. 675-685. (2014). DOI: https://doi.org/10.1016/j.jmst.2014.04.005
  • [10] H.-Y. Ha, J.-Y. Kang, S.G. Kim, B. Kim, S.S. Park, C.D. Yim, B.S. You. Influences of metallurgical factors on the corrosion behaviour of extruded binary Mg-Sn alloys. Corros. Sci. 82, 369-379 (2014). DOI: https://doi.org/10.1016/j.corsci.2014.01.035
  • [11] P. Chander, S. Singh, I. Farina, F. Fraternali, l. Feo. Physical-mechanical characterization of biodegradable Mg-3Si-Ha composites. PSU Res. Rev. 2, 152-174 (2018).
  • [12] X. Wang, J.T. Li, M.Y. Xie, L.J. Qu, P. Zhang, X.L. Li. Structure, mechanical property and corrosion behaviors of (HA + β-TCP)/Mg-5Sn composite with interpenetrating networks. Mater. Sci. Eng. C. 56, 386-392 (2015). DOI: https://doi.org/10.1016/j.msec.2015.06.047
  • [13] Leonardo Hernández, Violeta Barranco, Yaymarilis Veranes Pantoja, Biomimetic hydroxyapatite (HAp) coatings on pure Mg and their physiological corrosion behavior. Ceramics International 48 (2), (2021). DOI: https://doi.org/10.1016/j.ceramint.2021.09.206
  • [14] Z.-H. Zhao, Z.-M. Hua, D.W. Li, D.S. Wei, Y. Liu, J.G. Wang, D. Luo, H.Y. Wang, Effect of Sn Content on the Microstructure, Mechanical Properties and Corrosion Behavior of Biodegradable Mg-x (1, 3 and 5 wt.%) Sn-1Zn-0.5Ca Alloys. Materials 11, 2378 (2018). DOI: https://doi.org/10.3390/ma11122378
  • [15] A.M.A Mohamed, F.H. Samuel, A.M. Samuel, H.W. Doty, S. Valtierra, Influence of Tin Addition on the Microstructure and Mechanical Properties of Al-Si-Cu-Mg and Al-Si-Mg Casting Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 39, 490-501 (2008). DOI: https://doi.org/10.1007/s11661-007-9454-5
  • [16] Q. Zhang, Q. Li, X. Chen, The effects of Sn content on the corrosion behavior and mechanical properties of Mg-5Gd-3Y-xSn-0.5Zr alloys. RSC Adv. 11, 1332-1342 (2021). DOI: https://doi.org/10.1039/D0RA08986A
  • [17] S.H. Salleh; W.E. Jantan, R.A. Malek, S.S.C. Abdullah, P. Balan, The hydrogen evolution of pure magnesium in different electrolytes. AIP Conference Proceedings 2339, 020238 (2021). DOI: https://doi.org/10.1063/5.0044518
  • [17] L. Hou, Z. Li, H. Zhao, Y. Pan, S. Pavlinich, X. Liu, X. Li, Y. Zheng, L. Li, Microstructure, Mechanical Properties, Corrosion Behavior and Biocompatibility of As-Extruded Biodegradable Mg-3Sn-1zn-0.5Mn Alloy. Journal of Materials Science & Technology 32, 9, 874-882 (2016). DOI: https://doi.org/10.1016/j.jmst.2016.07.004
  • [18] P. Kumar. A.K. Bhargava. Y.V. Prasad, S.S. Govind, Effect of Tin Additions on Microstructure and Mechanical Properties of Sand Casting of AZ92 Magnesium Base Alloy. Mat. Sci. Res. India 10(2). DOI: http://dx.doi.org/10.13005/msri/100205
  • [19] B. Bakin, T. Koc Delice, U. Tiric, I. Birlik, F. Ak Azem, Bioactivity and corrosion properties of magnesium-substituted CaP coatings produced via electrochemical deposition. Surface and Coatings Technology 301, 29-35 (2016). DOI: https://doi.org/10.1016/j.surfcoat.2015.12.078
  • [20] J. Ma, Q. Wei, T. Le, J. Wang, P. Jin Effect of Sn addition on the microstructure and mechanical properties of AZ31 alloys. Materials Research Express 7, 12 (2020). DOI: https://doi.org/10.1088/2053-1591/abcda8
  • [21] R. Radha, D. Sreekanth, Mechanical, In vitro corrosion and bioactivity performance of Mg based composite for orthopedic implant applications: Influence of Sn and HA addition. Biomedical Engineering Advances 3, 100033 (2022). DOI: https://doi.org/10.1016/j.bea.2022.100033
Uwagi
1. This research has been funded by the Malaysian Ministry of Energy and Natural Resources through the Tin Industry (Research and Development) Board Research Grant 2021 (9025-00011).
2. Błędna numeracja bibliografii.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b15f85b-1cf5-41bf-b08b-888801a93b55
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.