Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study deals with the one-parameter family […] of Bernstein-type operators introduced by Gupta and called the limit q-Durrmeyer operators. The continuity of this family with respect to the parameter q is examined in two most important topologies of the operator theory, namely, the strong and uniform operator topologies. It is proved that […] is continuous in the strong operator topology for all q ∈ [0,1]. When it comes to the uniform operator topology, the continuity is preserved solely at q = 0 and fails at all q ∈ (0,1]. In addition, a few estimates for the distance between two limit q-Durrmeyer operators have been derived in the operator norm on C[0,1].
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20230157
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
- Department of Mathematics, Recep Tayyip Erdogan University, 53100, Rize, Turkey
autor
- Department of Mathematics, Atilim University, Incek 06830, Ankara, Turkey
autor
- Department of Mathematics, Atilim University, Incek 06830, Ankara, Turkey
Bibliografia
- [1] M. M. Derriennic, Sur laapproximation de fonctions intégrables sur [0,1] par des polynômes de Bernstein modifiés, J. Approx. Theory 31 (1981), no. 4, 325–343, DOI: https://doi.org/10.1016/0021-9045(81)90101-5.
- [2] J. L. Durrmeyer, Une formule d'inversion de la transformée de Laplace: Applications à la théorie des moments, Thèse de 3e cycle, Faculté des Sciences de l’Université de Paris, 1967.
- [3] A. Kajla and T. Acar, Bézier-Bernstein-Durrmeyer type operators, Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Math. RACSAM 114 (2020), no. 31, DOI: https://doi.org/10.1007/s13398-019-00759-5.
- [4] L. V. Kantorovich, La représentation explicite d’une fonction mesurablé arbitraire dans la forme de la limite d’une suite de polynômes, Mat. Sb. 41 (1934), no. 3, 503–510.
- [5] G. G. Lorentz, Bernstein Polynomials, Chelsea, New York, 1986.
- [6] R. Păltănea, Durrmeyer type operators on a simplex, Constr. Math. Anal. 4 (2021), no. 2, 215–228, DOI: https://doi.org/10.33205/cma.862942.
- [7] V. S. Videnskii, Papers of L.V. Kantorovich on Bernstein polynomials, Vestnik St. Petersburg Univ. Math. 46 (2013), no. 2, 85–88, DOI: https://doi.org/10.3103/S1063454113020088.
- [8] A. Aral, V. Gupta, and R. P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, 2013.
- [9] Z. Finta, L p-Approximation ( ⩾p 1) by q-Kantorovich operators, J. Oper. 2014 (2014), Article ID: 958656, 8 pages, DOI: https://doi.org/10.1155/2014/958656.
- [10] N. I. Mahmudov and M. Kara, Approximation theorems for generalized complex Kantorovich-type operators, J. Appl. Math. 2012 (2012), Article ID: 454579, 14 pages, DOI: https://doi.org/10.1155/2012/454579.
- [11] M. M. Derriennic, Modified Bernstein polynomials and Jacobi polynomials in q-calculus, Rend. Circ. Mat. Palermo 76 (2005), 269–290.
- [12] V. Gupta, Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput. 197 (2008), no. 1, 172–178, DOI: https://doi.org/10.1016/j.amc.2007.07.056.
- [13] V. Gupta and H. Wang, The rate of convergence of q-Durrmeyer operators for <
- [14] A. Il’inskii and S. Ostrovska, Convergence of generalized Bernstein polynomials, J. Approx. Theory 116 (2002), no. 1, 100–112, DOI: https://doi.org/10.1006/jath.2001.3657.
- [15] G. M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4 (1997), 511–518.
- [16] H. Wang, Properties of convergence for the q-Meyer-Konig and Zeller operators, J. Math. Anal. Appl. 335 (2007), no. 2, 1360–1373, DOI: https://doi.org/10.1016/j.jmaa.2007.01.103.
- [17] G. E. Andrews, R. Askey, and R. Roy, Special Functions, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 1999.
- [18] S. Ostrovska and M. Turan, On the metric space of the limit q-Bernstein operators, Numer. Funct. Anal. Optim. 40 (2019), no. 2, 134–146, DOI: https://doi.org/10.1080/01630563.2018.1504793.
- [19] V. S. Videnskii, On some classes of q -parametric positive operators, Oper. Theory Adv. Appl. 158 (2005), 213–222, DOI: https://doi.org/10.1007/3-7643-7340-7_15.
- [20] H. Wang and F. Meng, The rate of convergence of q-Bernstein polynomials for <
- [21] M. M. Almesbahi, S. Ostrovska, and M. Turan, The limit q Bernstein operators with varying q, In: Taş, K., Baleanu, D., Machado, J. (eds), Mathematical Methods in Engineering. Nonlinear Syst. Complex., vol. 23, Springer, Cham, 2019, pp. 203–215, DOI: https://doi.org/10.1007/978-3-319-91065-9_10.
- [22] Ö. Gürel Yılmaz, S. Ostrovska, and M. Turan, The continuity in q of the Lupaş q-analogues of the Bernstein operators, J. Math. Anal. Appl. 529 (2024), no. 2, 15 pages, DOI: https://doi.org/10.1016/j.jmaa.2022.126842.
- [23] G. M. Phillips, Interpolation and Approximation by Polynomials, Springer-Verlag, New York, 2003.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b13158f-2342-4c1d-84e9-5c66fa9bdabf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.