Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Internal cracking surrounding primary carbides in high carbon steel as-cast blooms induced by soft reduction is investigated to elucidate their influence of internal cracking on carbide precipitation and the resulting segregated band in hot-rolled wire rods. The primary carbides precipitation in high carbon steel has been investigated using both experimental observations and finite element simulations for as-cast blooms induced by soft reduction. It is found that the carbides precipitation in the vicinity of existing internal cracks is often located midway between the surface and centreline of the bloom, further increases the occurrence of the segregated bands in the hot-rolled wire rods. In addition, the growth of primary carbides surrounding the internal cracking are based on the chemical driving force and high density precipitate zones have been clarified in continuous casting bloom induced by soft reduction. It clearly shows that the spatial distribution of internal cracking surrounding primary carbides that play a key role in the formation of the segregated bands in the final steel products.
Wydawca
Czasopismo
Rocznik
Tom
Strony
73--82
Opis fizyczny
Bibliogr. 18 poz., fot., rys., tab.
Twórcy
autor
- R&D Institute of Bengang Steel Plates Co., Ltd., Benxi 117000, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
autor
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
autor
- Jiangsu Changqiang Iron and Steel Corp., Ltd., Jiangsu 214500, China
Bibliografia
- [1] J. Brimacombe, K. Sorimachi, Metall. Trans. B 8 (2), 489 (1977).
- [2] B. Li, H. Ding, Z. Tang, Int. J. Miner. Metall. Mater. 19 (1), 21 (2012).
- [3] N. Zong, H. Zhang, Y. Liu, Z. Lu, Ironmak. Steelmak. DOI: https://doi.org/10.1080/03019233.2018.1556911
- [4] N. Zong, H. Zhang, Y. Liu, Z. Lu, Metall. Res. Technol. DOI: https://doi.org/10.1051/metal/2018102
- [5] N. Zong, H. Zhang, M. Wang, Z. Lu, Metall. Res. Technol. DOI: https://doi.org/10.1051/metal/2018102
- [6] Y. Won, T. Yeo, D. Seol, Metall. Mater. Trans. B 31 (4), 779 (2000).
- [7] N. Zong, Y. Liu, H. Zhang, Metall. Res. Technol. 114, 311 (2017).
- [8] N. Zong, Y. Liu, H. Zhang, Metall. Res. Technol. 114, 413 (2017).
- [9] K. Kim, H. Han, T. Yeo, Ironmak. Steelmak 24 (3), 249 (1997).
- [10] K. Strecken, M. Pfennig, E. Anelli, P. di Nunzio, A. Mollo, Optimising the Structure of High-Carbon Steel Wire, EUR, Luxembourg, 1998.
- [11] G. Krauss, Metall. Mater. Trans. B 34, 781 (2003).
- [12] D.G. Eskin, Suyitno, L. Katgerman, Prog. Mater. Sci. 49, 629 (2004).
- [13] D. Amram, D. Barlam, E. Rabkin, R.Z. Shneck, Scripta. Mater. 122, 89 (2016).
- [14] M. Roussel, X. Sauvage, M. Perez, D. Magne, A. Hauet, A. Steckmeyer, M. Vermont, T. Chaise M. Couvrat, Acta. Mater. DOI: https://doi.org/10.1016/j.mtla.2018.10.010
- [15] Y. Tsuchida, I. Sugawara, S. Miyahara, T. Ishida, M. Ishida, S. Matsumoto, Trans. ISIJ 22, B265 (1982).
- [16] W. Bleck, W. Wang, R. Bülte, Steel Research Int. 7, 485(2006).
- [17] C. Ji, C. Wu, M. Zhu, JOM 68 (12), 3107 (2016).
- [18] C. Li, B. Thomas, Metall. Mater. Trans. B 35B, 1151. (2004).
Uwagi
1. This research was funded by the Independent scientific research project of School of Materials Science and Engineering, Tsinghua University, grant number 53120440221. The authors acknowledge the supports from the Bengang Steel Plates Co., Ltd, and special thanks are due to our cooperating company for industrial trials and application.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b0dde1a-8647-4801-87b2-a8c01dc8179e