PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of Drape Coefficient by Artificial Neural Network

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An artificial neural network (ANN) model was developed to predict the drape coefficient (DC). Hanging weight, Sample diameter and the bending rigidities in warp, weft and skew directions are selected as inputs of the ANN model. The ANN developed is a multilayer perceptron using a back-propagation algorithm with one hidden layer. The drape coefficient is measured by a Cusick drape meter. Bending rigidities in different directions were calculated according to the Cantilever method. The DC obtained results show a good correlation between the experimental and the estimated ANN values. The results prove a significant relationship between the ANN inputs and the drape coefficient. The algorithm developed can easily predict the drape coefficient of fabrics at different diameters.
Rocznik
Strony
266--274
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
  • University of Monastir, National Engineering School, Textile Department, Ibn El Jazzar Street, 5019 Monastir, Tunisia
  • ATSI: Research unit of automatic, Signal and Image analysis, University of Monastir, Ibn El Jazzar Street, 5019 Monastir, Tunisia
autor
  • University of Monastir, National Engineering School, Textile Department, Ibn El Jazzar Street, 5019 Monastir, Tunisia
  • LESTE, Laboratory of Energetic and Thermic systems, University of Monastir, Ibn El Jazzar Street, 5019 Monastir, Tunisia
autor
  • University of Monastir, National Engineering School, Textile Department, Ibn El Jazzar Street, 5019 Monastir, Tunisia
  • LESTE, Laboratory of Energetic and Thermic systems, University of Monastir, Ibn El Jazzar Street, 5019 Monastir, Tunisia
Bibliografia
  • [1] Abbott, G.M., Grosberg, P., & Leaf. (1973). The Elastic Resistance to Bending of Plain-Woven Fabrics. Journal of the Textile Institute, 64 6, 346-362.
  • [2] Antony, L., Amar, K., & Muthu, G. (2004). Neural Network Models for Fabric Drape Prediction. IEEE, 2925-2929.
  • [3] Behre, B. (1961). Mechanical Properties of Textile Fabrics, Part I: Shearing. Textile Research Journal, 31 2, 87-99.
  • [4] Chattopadhyay, R., & Guha, A., (2004). Artificial Neural Networks: Applications to Textiles. The Textile Institute, textile progress, 35 1, 301-317.
  • [5] Chu, C.C., Cummings, C.L., & Texeira, N.A. (1950). Mechanics of Elastic Performance of Textile Materials PartV: A Study of the Factors Affecting the Drape of Fabrics-The Development of a Drape Meter. Journal of textile institute, 20 8, 539-548.
  • [6] Chu, C.C., Platt, M.M., & Hamburger, W.J. (1960). Investigation of the Factors Affecting the Drapeability of Fabrics. Textile Research Journal, 30 1, 66-67.
  • [7] Collier, J. R., Billie, J. C., Gina, O., & Sargand. M. (1991). Drape Prediction by Means of Finite-element Analysis. Journal of the Textile Institute, 82 1, 96-107.
  • [8] Cooper, D.N.E. (1960), The Stiffness of Woven Textiles. Journal of Textile Institute, 51 8, T317-T335.
  • [9] Cusick, G.E. (1965). The dependence of Fabric Drape on Bending and Shearing Stiffness, Journal of the Textile Institute, 65 5, 596-606.
  • [10] Cusick, G. E. (1968). The Measurement of Fabric Drape. Textile Research Journal, 59 6, 253-260.
  • [11] Dahlberg, B. (1961). Mechanical Properties of Textile Fabrics Part II: Buckling. Textile Research Journal, 31 2, 87-99.
  • [12] Frédéric, D. (1997). Image Filtering Using Neural Networks, MIME Department, University of Paris 8, Septembre. Retrieved from www.mime.univ-paris8.fr
  • [13] George, K. S., & Ren, Z., (1997). The Characterization of the Static and Dynamic Drape of Fabrics. Journal of the Textile Institute, 88 4, 465-475.
  • [14] Grosberg, P. (1966). The Mechanical Properties of Woven Fabrics, Part II: The Bending of Woven Fabrics. Textile Research Journal, 36 3, 250-211.
  • [15] Hamdi, T., Ghith, A., & Fayala, F. (2014). A Principal Component Analysis (PCA) Method For Predicting the correlation Between Some Fabrics Parameter and the Drape. Autex research Journal, 14 1, 22-27.
  • [16] Hu, J. L., & Chan, Y. F. (1998). Effect of Fabric Mechanical Properties on Drape. Textile Research Journal, 68 1, 57-64.
  • [17] Jedda H., Ghith A. & Sakli F. (2007). Prediction of Fabric Drape Using FAST System. Journal of the Textile Institute 98 3, 219-225.
  • [18] Jeong, Y. J., & Philips, P. G. (1991). A Study of Fabric Drape Behavior with Image Analysis, Part II: The Effect of Fabric Structure and Mechanical Properties on Fabric Drape, Journal of the Textile Institute 89, Part1, 1, 70-79.
  • [19] Lindberg, J., Behre. B., & Dahlberg. B., (1961), Mechanical Properties of Textile Fabrics, Part III Shearing and Buckling of Various Commercial Fabrics. Textile Research Journal, 31 2, 99-122.
  • [20] Luger. G.F., & Stubblefield. W.A. 1993. Artificial Intelligence: Structures and Strategies for Complex Problem Solving. 2nd Edition, Benjamin/Cumming Publishing, Redwood City, California.
  • [21] McClelland, J.L., Rumelhart, D.E., & Hinton, G.E. (1986). The Appeal of Parallel Distributed Processing, in Parallel Distributed Processing: Explorations in the Microstructure of Cognition - Foundations, 1, MIT Press, Cambridge, 3-44.
  • [22] Oloffson B. (1964). A General Model of Fabric as Geometric-Mechanical Structure. Journal of the Textile Institute 55 11, 541-557.
  • [23] Pierce, F.T. (1930). The Handle Cloth as a Measurable Quantity. Journal of the Textile Institute 21 6, 377-417.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b0b15a5-1422-487c-a587-66d2ee9d98bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.