PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the Thermal Behaviour of CL-20, Potassium Perchlorate, Lithium Perchlorate and Their Admixtures by DSC and TG

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The thermal decomposition characteristics of CL-20, potassium perchlorate (KP), lithium perchlorate (LP), a CL-20/KP mixture, and a CL-20/LP mixture were studied using thermogravimetry-differential scanning calorimetry (TG-DSC). The DSC curves for KP exhibited three endothermic peaks and one exothermic peak. The first two endothermic peaks correspond to the rhombic-cubic transition and the fusion of KP, respectively, the third indicates the fusion of KCl, while the exothermic peak is attributed to the decomposition of KP. The DSC curves obtained from LP showed four endothermic peaks and one exothermic peak. The first two endothermic peaks indicate the loss of adsorbed water and water of crystallization, while the third and fourth are associated with the fusion of LP and LiCl, respectively; the exothermic peak is due to the decomposition of LP. The presence of KP had little effect on the thermal decomposition of CL-20 while the addition of LP increased the temperature at which CL-20 exhibits an exothermic peak. In addition, the thermal decomposition of LP appeared to be catalyzed by the presence of CL-20.
Rocznik
Strony
115--130
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Bibliografia
  • [1] Samudre, S. S.; Nair, U. R.; Gore, G. M.; Sinha, R. K.; Sikder, A. K.; Asthana, S. N. Studies on an Improved Plastic Bonded Explosive (PBX) for Shaped Charges. Propellants Explos. Pyrotech. 2009, 34(2): 145-150.
  • [2] Guo, X. D.; Ouyang, G.; Liu, J.; Li, Q.; Wang, L. X.; Gu, Z. M.; Li, F. S. Massive Preparation of Reduced-Sensitivity Nano CL-20 and its Characterization. J. Energ. Mater. 2015, 33(1): 24-33.
  • [3] Geetha, M.; Nair, U. R.; Sarwade, D. B.; Gore, G. M.; Asthana, S. N.; Singh, H. Studies on CL-20: the Most Powerful High Energy Material. J. Therm. Anal. Calorim. 2003, 73(3): 913-922.
  • [4] Nair, U. R.; Gore, G. M.; Sivabalan, R.; Satpute, R. S.; Asthana, S. N.; Singh, H. Studies on Polymer Coated CL-20 − the Most Powerful Explosive. J. Poly. Mater. 2003, 21(4): 377-382.
  • [5] Nair, U. R.; Sivabalan, R.; Gore, G. M.; Geetha, M.; Asthana, S. N.; Singh, H. Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based Formulations (Review). Combust., Explos. Shock Waves 2005, 41(2): 121-132.
  • [6] Ordzhonikidze, O.; Pivkina, A.; Frolov, Yu.; Muravyev, N.; Monogarov, K. Comparative Study of HMX and CL-20: Thermal Analysis, Combustion and Interaction with Aluminium. J. Therm. Anal. Calorim. 2011, 105(2): 529-534.
  • [7] Sivabalan, R.; Gore, G. M.; Nair, U. R.; Aaikia, A.; Venugopalan, S.; Gandhe, B. R. Study on Ultrasound Assisted Precipitation of CL-20 and its Effect on Morphology and Sensitivity. J. Hazard. Mater. 2007, 139(2): 199-203.
  • [8] Bayat, Y.; Zeynali, V. Preparation and Characterization of Nano-CL-20 Explosive. J. Energ. Mater. 2011, 29(4): 281-291.
  • [9] Ghosh, M.; Venkatesan, V.; Sikder, N.; Sikder, A. K. Quantitative Analysis of α-CL-20 Polymorphic Impurity in ε-CL-20 Using Dispersive Raman Spectroscopy. Cent. Eur. J. Energ. Mater. 2013, 10(3): 419-438.
  • [10] Goede, P.; Latypov, N. V.; Östmark, H. Fourier Transform Raman Spectroscopy of the Four Crystallographic Phases of α, β, γ and ε 2,4,6,8,10,12-Hexanitro- 2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05,9.03,11]dodecane (HNIW, CL-20). Propellants Explos. Pyrotech. 2004, 29(4): 205-208.
  • [11] Chen, H. X.; Chen, S. S.; Li, L. J.; Jin, S. H. Quantitative Determination of ε-Phase in Polymorphic HNIW Using X-ray Diffraction Patterns. Propellants Explos. Pyrotech. 2008, 33(6): 467-471.
  • [12] Agrawal, J. P. Some New High Energy Materials and Their Formulations for Specialized Applications. Propellants Explos. Pyrotech. 2005, 30(5): 316-328.
  • [13] Elbeih, A.; Husarova, A.; Zeman, S. Path to ε-HNIW with Reduced Impact Sensitivity. Cent. Eur. J. Energ. Mater. 2011, 8(3): 173-182.
  • [14] Urbelis, J. H.; Swift, J. A. Solvent Effects on the Growth Morphology and Phase Purity of CL-20. Crystal Growth & Design 2014, 14(4): 1642-1649.
  • [15] Dorofeeva, O. V.; Suntsova, M. A. Enthalpy of Formation of CL-20. Comput. Theor. Chem. 2015, 1057(6): 54-59.
  • [16] Nedelko, V. V.; Chukanov, N. V.; Raevskii, A. V.; Korsounskii, B. L.; Larikova, T. S.; Kolesova, O. I. Comparative Investigation of Thermal Decomposition of Various Modifications of Hexanitrohexaazaisowurtzitane (CL-20). Propellants Explos. Pyrotech. 2000, 25(5): 255-259.
  • [17] Dong, L. M.; Li, X. D.; Yang, R. J. Thermal Decomposition Study of HNIW by Synchrotron Photoionization Mass Spectrometry. Propellants Explos. Pyrotech. 2011, 36(6): 493-498.
  • [18] Zhu, Y. L.; Wang, K. K.; Shan, M. X.; Zheng, X. D.; Jiao, Q. J.; Wang, J. S. Thermal Decomposition Kinetics of Hexanitrohexaazaisowurtzitane/Ammonium Perchlorate. Cent. Eur. J. Energ. Mater. 2016, 13(1): 149-159.
  • [19] Zhu, Y. L.; Shan, M. X.; Zheng, X. D.; Wang, J. S.; Jiao, Q. J. Kinetics of Thermal Decomposition of ε-Hexanitrohexaazaisowurtzitane by TG-DSC-MS-FTIR. Korean J. Chem. Eng. 2015, 32(6): 1164-1169.
  • [20] Turcotte, R.; Vachon, M.; Kwok, Q. S. M.; Wang, R. P.; Jones, D. E. G. Thermal Study of HNIW (CL-20). Thermochim. Acta 2005, 433(1): 105-115.
  • [21] Xiang, M.; Jiao, Q. J.; Zhu, Y. L.; Yu, J. Y.; Chen, L. P. Thermal Study of HNIW (CL-20) and Mixtures Containing Aluminum Powder. J. Therm. Anal. Calorim. 2014, 116(3): 1159-1163.
  • [22] Hakobu, B.; Shuichi, K.; Hiroshi, M. Y. Synthesis and Sensitivity of Hexanitrohexaazaisowurtzitane (HNIW). Propellants Explos. Pyrotech. 1998, 23(6): 333-336.
  • [23] Jin, S. H.; Shu, Q. H.; Chen, S. S. Preparation of ε-HNIW by a One-pot Method in Concentrated Nitric Acid from Tetraacetyldiformylhexaazaisowurtzitane. Propellants Explos. Pyrotech. 2007, 32(6): 468-472.
  • [24] Lee, J. S.; Hsu, C. K. The DSC Studies on the Phase Transition, Decomposition and Melting of Potassium Perchlorate with Additives. Thermochim. Acta 2001, 367-368(1): 367-370.
  • [25] Wickleder, M. S. Crystal Structure of LiClO4. Cheminform 2003, 34(44): 1466-1468.
  • [26] Yan, K.; Zhang, Y. W.; Wang, Y. C.; Liu, J. Z.; Zhou, J. H.; Cen, K. F. Kinetic study of Lithium Perchlorate Decomposition Mechanism. J. Solid Rocket Tech. 2013, 36(3): 353-357.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b061179-ffd2-471e-81ce-5a9c54b3d39a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.