PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lubrication Reliability and Oil Churning Loss of Differential Gear Trains in a Mechanical-Hydraulic Coupling Mechanism

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A differential gear train (DGT) is a crucial component of a mechanical-hydraulic coupling mechanism. The transmission process generates oil churning losses, which significantly impact the overall transmission efficiency. Due to the complexity of DGTs and the unpredictability of lubrication reliability, traditional analysis of churning characteristics is inadequate. In this study, the moving particle semi-implicit (MPS) method is employed to analyze the effects of steady-state rotation speeds, dynamic rotation speeds, and oil filling heights on the oil churning characteristics of DGTs. The accuracy of the MPS method in predicting churning loss is illustrated by the Mean Absolute Percentage Error (MAPE)of 6.4% obtained experimentally.It is concluded that: increasing the oil filling height improves lubrication reliability by 20.9%, but results in greater power loss. The lubrication reliability and power loss of DGTs with different output forms are mutually advantageous under different influencing factors. This paper helps to improve the lubrication reliability of DGTs.
Rocznik
Strony
art. no. 182434
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • Shandong University of Science and Technology, China
autor
  • Shandong University of Science and Technology, China
autor
  • Shandong University of Science and Technology, China
  • Shandong University of Science and Technology, China
autor
  • Shandong University of Science and Technology, China
autor
  • Taishan University, China
Bibliografia
  • 1. Concli F. Oil squeezing power losses in gears: A CFD analysis. WIT Transactions on Engineering Sciences 2012;74, https://doi.org/10.2495/AFM120041.
  • 2. Concli F, Conrado E, Gorla C. Analysis of power losses in an industrial planetary speed reducer: Measurements and computational fluid dynamics calculations. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 2013;228(1):11-21, https://doi.org/10.1177/1350650113496980.
  • 3. Concli F, Gorla C. Computational and experimental analysis of the churning power losses in an industrial planetary speed reducers. WIT Transactions on Engineering Sciences 2011;74, https://doi.org/10.2495/AFM120261.
  • 4. Concli F, Gorla C. Numerical modeling of the churning power losses in planetary gearboxes: An innovative partitioning-based meshing methodology for the application of a computational effort reduction strategy to complex gearbox configurations. Lubrication Science 2017;29, https://doi.org/10.1002/ls.1380.
  • 5. Concli F, Gorla C, Della Torre A, Montenegro G. Churning power losses of ordinary gears: A new approach based on the internalfluid dynamics simulations. Lubrication Science 2014;27:313-26, https://doi.org/10.1002/ls.1280.
  • 6. Dai H, Wan L, Zeng Q, Lu Z, Sun Z, Liu W. Method and Test Bench for Hydro-Mechanical Continuously Variable Transmission Based on Multi-Level Test and Verification. Machines 2021;9:358, https://doi.org/10.3390/machines9120358.
  • 7. Deng X, Wang S, Hammi Y, Qian L, Liu Y. A combined experimental and computational study of lubrication mechanism of high precision reducer adopting a worm gear drive with complicated space surface contact. Tribology International 2020;146:106261, https://doi.org/10.1016/j.triboint.2020.106261.
  • 8. Deng X, Wang S, Qian L, Liu Y. Simulation and experimental study of influences of shape of roller on the lubrication performance of precision speed reducer. Engineering Applications of Computational Fluid Mechanics 2020;14:1156-72, https://doi.org/10.1080/19942060.2020.1810127.
  • 9. Diab Y, Ville F, Velex P. Investigations on power losses in high-speed gears. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 2006;220(3):191-198. https://doi.org/10.1243/13506501JET136.
  • 10. Guo D, Chen F, Liu J, Wang Y, Wang X. Numerical Modeling of Churning Power Loss of Gear System Based on Moving Particle Method. Tribology Transactions 2019;63:1-18, https://doi.org/10.1080/10402004.2019.1682212.
  • 11. Guo D, Wen G, Wang Y, Luo D. A Theoretical and Experimental Study on the Power Loss of Gearbox Based on Dimensionless Analysis. Journal of Tribology. 2023;145(10), https://doi.org/10.1115/1.4062449
  • 12. Hammami M, Feki N, Ksentini O, Hentati T, Abbes MS, Haddar M. Dynamic effects on spur gear pairs power loss lubricated with axle gear oils. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2019;234(5):1069-84, https://doi.org/10.1177/0954406219888236.
  • 13. Hammami M, Fernandes CMCG, Martins R, Abbes MS, Haddar M, Seabra J. Torque loss in FZG-A10 gears lubricated with axle oils. Tribology International 2019;131:112-27, https://doi.org/10.1016/j.triboint.2018.10.017.
  • 14. Hu X, Jiang Y, Luo C, Feng L, Dai Y. Churning power losses of a gearbox with spiral bevel geared transmission. Tribology International 2019;129:398-406, https://doi.org/10.1016/j.triboint.2018.08.041.
  • 15. Hu X, Wang A, Li P, Wang J. Influence of dynamic attitudes on oil supply for bearings and churning power losses in a splash lubricated spiral bevel gearbox. Tribology International 2021;159:106951, https://doi.org/10.1016/j.triboint.2021.106951.
  • 16. Ji Z, Stanic M, Hartono EA, Chernoray V. Numerical simulations of oil flow inside a gearbox by Smoothed Particle Hydrodynamics (SPH) method. Tribology International 2018;127:47-58, https://doi.org/10.1016/j.triboint.2018.05.034.
  • 17. Kahraman A, Hilty DR, Singh A. An experimental investigation of spin power losses of a planetary gear set. Mechanism and Machine Theory 2015;86:48-61, https://doi.org/10.1016/j.mechmachtheory.2014.12.003.
  • 18. Keller MC, Braun S, Wieth L, Chaussonnet G, Dauch TF, Koch R, et al. Smoothed Particle Hydrodynamics Simulation of Oil-Jet Gear Interaction1. Journal of Tribology 2019;141(7), https://doi.org/10.1115/1.4043640.
  • 19. Koshizuka S, Oka Y. Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid. Nuclear Science and Engineering -NUCL SCI ENG 1996;123:421-34, https://doi.org/10.13182/NSE96-A24205.
  • 20. Liu H, Dangl F, Lohner T, Stahl K. Numerical Visualization of Grease Flow in a Gearbox. Chinese Journal of Mechanical Engineering 2023;36(1):28, https://doi.org/10.1186/s10033-023-00831-7.
  • 21. Liu H, Jurkschat T, Lohner T, Stahl K. Detailed Investigations on the Oil Flow in Dip-Lubricated Gearboxes by the Finite Volume CFD Method. Lubricants 2018;6(2), https://doi.org/10.3390/lubricants6020047.
  • 22. Liu H, Jurkschat T, Lohner T, Stahl K. Determination of oil distribution and churning power loss of gearboxes by finite volume CFD method. Tribology International 2017;109:346-54, https://doi.org/10.1016/j.triboint.2016.12.042.
  • 23. Michaelis K, Höhn BR, Hinterstoißer M. Influence factors on gearbox power loss. Industrial Lubrication and Tribology 2011;63(1):46-55, https://doi.org/10.1108/00368791111101830.
  • 24. Novaković B, Radovanović L, Zuber N, Radosav D, Đorđević L, Kavalić M. Analysis of the influence of hydraulic fluid quality on external gear pump performance. Eksploatacja i Niezawodność – Maintenance and Reliability. 2022;24(2):260-8, https://doi.org/10.17531/ein.2022.2.7.
  • 25. Ouyang B, Ma F, Dai Y, Zhang Y. Numerical analysis on heat-flow-coupled temperature field for orthogonal face gears with oil–jet lubrication. Engineering Applications of Computational Fluid Mechanics 2021;15:762-80, https://doi.org/10.1080/19942060.2021.1918259.
  • 26. Tanaka M, Cardoso R, Bahai H. Multi-resolution MPS method. Journal of Computational Physics 2018;359:106-36, https://doi.org/10.1016/j.jcp.2017.12.042.
  • 27. Zeng Q-l, Sun Z-y, Wan L-r, Yang Y, Dai H-z, Yang Z-k. Research and Comparative Analysis of Flow Field Characteristics and Load-Independent Power Losses of Internal and External Gear Pairs. Mathematical Problems in Engineering 2020;2020:8860588, https://doi.org/10.1155/2020/8860588.
  • 28. Zhu X, Dai Y. Development of an analytical model to predict the churning power losses of an orthogonal face gear. EngineeringScience and Technology, an International Journal 2023;41:101383, https://doi.org/10.1016/j.jestch.2023.101383.
  • 29. Živković P, Milutinović M, Tica M, Trifković S, Čamagić I. Reliability Evaluation of Transmission Planetary Gears “bottom-up” approach. Eksploatacja i Niezawodność – Maintenance and Reliability. 2023;25(1), https://doi.org/10.17531/ein.2023.1.2.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b05bf1c-2ec5-429f-9fa4-44a2c714566f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.