Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The publication presents the results of research on the statistically significant impact of the number of layers on vibration damping properties of vibroacoustic mats. The research was carried out on the author's research stand. The research was carried out on sandwich systems made of polyurethane foam. The impact force of the analyzed variables was determined on the basis of constructed multiple regression models, the so-called multifactor models and determination of the standardized value β. The research was carried out using the PQStat software. In the models being built, the significance level was p < 0.05. Three statistically significant linear multivariate models for one-third frequencies were constructed: • 0-20000 Hz - a model for the entire frequency spectrum analysed during the tests, • 0-400 Hz - a model for frequencies generating construction vibrations that may affect the worker as general vibrations, • 50-20000 Hz – a model for frequencies that generate construction vibrations that can cause auditory sensations (noise). It was found: positive correlation of the number of layers in vibration damping systems with a third octave frequency of up to 400 Hz; negative correlation of the number of layers in vibration damping systems with a third octave frequency of 50 to 20000 Hz.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
173--183
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Silesian University of Technology, ul. Akademicka 2A 44-100 Gliwice, Poland
autor
- Silesian University of Technology, ul. Akademicka 2A 44-100 Gliwice, Poland
Bibliografia
- 1. Aczel A. (1989) Complete Business Statistics, Richard D. Irwin, Inc., Sydney
- 2. Arenas J.P., Crocker M.J. (2010) Sound and Vibration 44 (7) pp. 12-17
- 3. Cao L. et al. (2018) Composites Communications 10 pp. 25-35
- 4. Engel Z., Zawieska W. (2010). Hałas i drgania w procesach pracy - źródła ocena, zagrożenia, Centralny Instytut Ochrony Pracy - Państwowy Instytut Badawczy, Warszawa.
- 5. Hu Ch., Yang Y., Peng K. et al. (2018) Book Series: IOP Conference Series-Earth and Environmental Science, 108, Article Number: UNSP 022077
- 6. Indulski J. (red). (1999). Higiena pracy, tom II, Instytut Medycyny Pracy, Łódź.
- 7. Kang J.-H. (2017) Journal of Vibration And Control, 23 (10) pp. 1675-1680
- 8. Kolekar S., Venkatesh K., Oh J.-S. et al. (2019) Journal of Vibration Engineering & Technologies, 7 (4) pp. 359-377
- 9. Koradecka D. (red.), (2008). Bezpieczeństwo i Higiena Pracy, Centralny Instytut Ochrony Pracy - Państwowy Instytut Badawczy, Warszawa.
- 10. Kozioł M. et al., (2015) Composites Theory and Practice, 15 (3) pp. 158-162
- 11. Lis T., Nowacki K. (2005). Zarządzanie bezpieczeństwem i higieną pracy w zakładzie przemysłowym, Wyd. Politechniki Śląskiej, Gliwice.
- 12. Malburet F., Krysinski T. (2007). Mechanical Vibrations Active and Passive Control, ISTE Ltd, London.
- 13. Małysa T., Nowacki K., Wieczorek J. (2016) Composites Theory and Practice, 16 (4) pp. 244-248
- 14. Mayer D., Militzer J., Bein M. (2014). Integrated Solutions for Noise and Vibration Control in Vehicles, SAE, (01). pp. 2048-2043.
- 15. Rafiee M., Nitzsche F., Labrosse M. R. (2019) Journal of Composite Materials, 53 (15) pp. 2105-2118
- 16. Rimasauskiene R., Jurenas V., Radzienski M. et al. (2019) Composite Structures, 223, Article Number: UNSP 110975
- 17. Uzarczyk A. (2006) Czynniki szkodliwe i uciążliwe w środowisku pracy, ODDK, Gdańsk.
- 18. Wang F. et al. (2017) Journal of Alloys and Compounds 727 pp. 163-167
- 19. Yano D., Ishikawa S. Tanaka K. et al. (2019) Journal of Sound and Vibration, 454 pp. 14-31
- 20. Zhang Z., Xu F. (2019) Journal of Wind Engineering and Industrial Aerodynamics, 191 pp. 227-238
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b04a00a-613f-4d04-a880-7050e07588f3