Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To clarify the stress–strain behaviour, strength on the deviatoric plane, shear band formation, and dilatancy characteristics of aeolian sand under three-dimensional loading conditions, a series of true-triaxial tests with various intermediate principal stress coefficients b ∈ [0.0, 1.0] at constant effective mean principal stress p' were conducted under drained and undrained conditions. The results presented that the variations of the stress–strain, strength, and effective internal friction angle show its significant dependence on the relative magnitude of the intermediate principal stress expressed in terms of the b value. Because a clear penetrating shear band was produced in the prismatic specimen at b = 0.2 and b = 0.4, the stress–strain response exhibits softening, and its peak shear stress and effective internal friction angle are reduced. Besides, shear bands often appear in the hardening regime. Moreover, the dilatancy was the weakest at b = 0.0 and the strongest at b = 0.4, which depended on the stress path in terms of the b value. The peak shear stress on the deviatoric plane decreased in a transverse “S” shape with the b value varying from 0.0 to 1.0, correspondingly, the effective internal friction angle increased first and then decreased. But in the case of increasing p' value, aeolian sand has a unified critical state line and phase transformation line at constant b value.
Czasopismo
Rocznik
Tom
Strony
art. no. e151, 2024
Opis fizyczny
Bibliogr. 43 poz., rys., wykr.
Twórcy
autor
- Solid Mechanics Institute, Ningxia University, Yinchuan 750021, People’s Republic of China
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, People’s Republic of China
autor
- Solid Mechanics Institute, Ningxia University, Yinchuan 750021, People’s Republic of China
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, People’s Republic of China
Bibliografia
- 1. Abelev AV, Lade PV. Effects of cross anisotropy on three-dimensional behaviour of sand. I: stress–strain behaviour and shear banding. J Eng Mech. 2003;129(2):160–6. https:// doi. org/ 10.1061/(ASCE)0733-9399(2003)129:2(160).
- 2. Abelev AV, Lade PV. Characterization of failure in cross-anisotropic soils. J Eng Mech. 2004;130(5):599–606. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:5(599).
- 3. Alshibli KA, Williams HS. A true triaxial apparatus for soil testing with mixed boundary conditions. Geotech Test J. 2005;28(6):534–43. https://doi.org/10.1520/GTJ12679.
- 4. Anantanasakul P, Yamamuro JA, Lade PV. Three-dimensional drained behaviour of normally consolidated anisotropic kaolinclay. Soils Found. 2012;52(1):146–59. https://doi.org/10.1016/j.sandf.2012.01.014.
- 5. Arthur J, Menzies B. Inherent anisotropy in a sand. Geotechnique.1972;22(1):115–28. https://doi.org/10.1680/geot.1973.23.1.128.
- 6. Bardet J. Lode dependences pressure-sensitive material for isotropic elastoplastic. J Appl Mech. 1990;57:498–506. https://doi.org/10.1115/1.2897051.
- 7. Choi C, Arduino P, Harney M. Development of a true triaxial apparatus for sands and gravels. Geotech Test J. 2007;31(1):32–44. https://doi.org/10.1520/GTJ100217.
- 8. Das BM. Advanced soil mechanics. New York: CRC Press; 2019.(ISBN: 9781351215183).
- 9. Dong T, Kong L, Zhe M, Zheng Y. Anisotropic failure criterion for soils based on equivalent stress tensor. Soils Found.2019;59(3):644–56. https://doi.org/10.1016/j.sandf.2019.02.001.
- 10. Haruyama M. Anisotropic deformation-strength characteristics of an assembly of spherical particles under three-dimensional stresses. Soils Found. 1981;21(4):41–55. https://doi.org/10.3208/sandf1972.21.4_41.
- 11. Ibsen LB, Prasstrup U. The Danish rigid boundary true triaxial apparatus for soil testing. Geotech Test J. 2002;25(3):254–65.https://doi.org/10.1520/GTJ11096J.
- 12. Janssen R, Verwijs M. Why does the world need a true triaxial tester? Part Part Syst Charact. 2007;24(2):108–12. https://doi.org/10.1002/ppsc.200601050.
- 13. Lade PV, Abelev AV. Effects of cross anisotropy on three-dimensional behaviour of sand. II: volume change behaviour and failure. J Eng Mech. 2003;129(2):167–74. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:2(167).
- 14. Lade PV, Duncan JM. Cubical triaxial tests on cohesionless soil. J Soil Mech Found Div. 1973;99(10):793–812. https://doi.org/10.1061/JSFEAQ.0001934.
- 15. Lade PV. Assessment of test data for selection of 3-D failure criterion for sand. Int J Numer Anal Meth Geomech. 2006;30(4):307–33. https://doi.org/10.1002/nag.471.
- 16. Lade PV, Wang Q. Analysis of shear banding in true triaxial tests on sand. J Eng Mech. 2001;127(8):762–8. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:8(762).
- 17. Li K, Li X, Chen Q, Nimbalkar S. Laboratory analyses of non-coaxiality and anisotropy of spherical granular media under truetriaxial state. Int J Geomech. 2023;23(9):04023150. https://doi.org/10.1061/IJGNAI.GMENG-8309.
- 18. Ma Z, Li X, Lv L. Verification of a novel stress path method by true-triaxial test. Sci Rep. 2024. https:// doi. org/ 10. 1038/s41598-024-56435-1.
- 19. Li X, Fan G. On strain localization of aeolian sand in true triaxial apparatus. Acta Geotech. 2024. https:// doi. org/ 10. 1007/s11440-024-02273-4.
- 20. Li X, Ma Z. A novel method for imitating true-triaxial stress path with conventional triaxial apparatus. Geomech Geophys Geo-Energy Geo-Resourc. 2024. https://doi.org/10.1007/s40948-024-00781-x.
- 21. Li XS, Dafalias YF. Anisotropic critical state theory: role of fabric. J Eng Mech. 2012;138(3):263–75. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000324.
- 22. Liu C, Dong T, Kong L, Wang S. Experimental study of stress direction dependence of sand under biaxial rotation of principal stress. Acta Geotech. 2023. https:// doi. org/ 10. 1007/s11440-023-02035-8.
- 23. Liu DP, Yang XH, Wang J, Mao ZJ. Study on static strength of Aeolian sand before and after cyclic loading. Appl Mech Mater.2014;580:191–4. https:// doi. org/ 10. 4028/ www. scientific. net/AMM.580-583.191.
- 24. Matsuoka H, Sun DA. Extension of spatially mobilized plane (SMP) to frictional and cohesive materials and its application to cemented sands. Soils Found. 1995;35(4):63–72. https://doi.org/10.3208/sandf.35.4_63.
- 25. Nakai T, Matsuoka H, Okuno N, Tsuzuki K. True triaxial tests on normally consolidated clay and analysis of the observed shear behaviour using elastoplastic constitutive models. Soils Found. 1986;26(4):67–78. https://doi.org/10.3208/sandf1972.26.4_67.
- 26. Qureshi MU, Chang I, Al-Sadarani K. Strength and durability characteristics of biopolymer-treated desert sand. Geomech Eng. 2017;12(5):785–801. https://doi.org/10.12989/gae.2017.12.5.785.
- 27. Reddy KR, Saxena SK, Budiman JS. Development of a true triaxial testing apparatus. Geotech Test J. 1992;15(2):89–105. https://doi.org/10.1520/GTJ10231J.
- 28. Riemer MF, Seed RB. Factors affecting apparent position of steady-state line. J Geotech Geoenviron Engineering. 1997;123(3):281–8. https:// doi. org/ 10. 1061/ (ASCE) 1090-0241(1997)123:3(281).
- 29. Rodriguez NM, Lade PV. True triaxial tests on cross-anisotropic deposits of fine Nevada sand. Int J Geomech. 2013;13(6):779–93.https://doi.org/10.1061/(ASCE)GM.1943-5622.0000282.
- 30. Sadrekarimi A, Olson SM. Residual state of sands. J Geotech Geoenviron Eng. 2014;140(4):04013045. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001054.
- 31. Souza Junior PLD, Santos Junior OFD, Fontoura TB, Freitas Neto OD. Drained and undrained behaviour of an aeolian sand from natal, Brazil. J Geotech Geoenviron Eng. 2020;3(2):263–70.https://doi.org/10.28927/sr.432263.
- 32. Symes M, Gens A, Hight D. Undrained anisotropy and principal stress rotation in saturated sand. Geotechnique. 1984;34(1):11–27.https://doi.org/10.1680/geot.1984.34.1.11.
- 33. Verdugo R, Ishihara K. The steady-state of sandy soils. Soils Found. 1996;36(2):81–91. https://doi.org/10.3208/sandf.36.2_81.
- 34. Wang X, Kong L, Li XF, Ma WG. A state-dependent non-coaxial model of sand using a modified vertex theory and its FEM application. Acta Geotech. 2021;17(3):741–53. https://doi.org/10.1007/s11440-021-01281-y.
- 35. Willam K, Warnke E. Constitutive model for triaxial behaviour of concrete. Proc Int Assoc Bridge Struct Eng. 1974;19:174–8.
- 36. Xia H, Zhang J, Cai J, Pan H, She X. Study on the bearing capacity and engineering performance of aeolian sand. Adv Mater SciEng. 2020;2020:1–11. https://doi.org/10.1155/2020/3426280.
- 37. Xu Z-W, Yin Z. Study on deformation characteristic of silt by true triaxial test. Chin J Rock Mech Eng. 2000;19(5):626–9.
- 38. Yamada Y, Ishïhara K. Undrained deformation characteristics of loose sand under three-dimensional stress conditions. Soils Found.1981;21(1):97–107. https:// doi. org/ 10. 1016/ 0148- 9062(82)91692-8.
- 39. Yao Y, Tian Y, Liu L. Three-dimensional anisotropic UH model for sands. Eng Mech. 2018;35(3):49–55. https://doi.org/10.6052/j.issn.1000-4750.2017.07.ST12.
- 40. Zhang K, Charkley FN. An anisotropic constitutive model of geomaterials based on true triaxial testing and its application. JCentral South Univ. 2017;24(6):1430–42. https://doi.org/10.1007/s11771-017-3547-0.
- 41. Zhang K, Jung JK, Zhang T. True triaxial experimental study of stress-induced anisotropy of sand. Instrument Testing Model Soil Rock Behav. 2011. https://doi.org/10.1061/47633(412)25.
- 42. Zhang M, Xu C, et al. True triaxial experimental research on shear behaviours of sand under different intermediate principal stresse sand different stress paths. J Hydraul Eng. 2015;46(9):1072–9.https://doi.org/10.13243/j.cnki.slxb.20150372.
- 43. Zhao J, Guo N. Unique critical state characteristics in granular media considering fabric anisotropy. Geotechnique. 2013;63(8):695–704. https://doi.org/10.1680/geot.12.P.040.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b00c5f3-0668-4989-bb81-bae9bfeec6a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.