
SSARS 2009   
Summer Safety and Reliability Seminars, July 19-25, 2009, Gdańsk-Sopot, Poland 

 

 77 

1. Introduction 

Fault detection, isolation and prognosis are crucial 
tasks for the safe and economic operation of modern 
plants. Based on the estimation of the system 
dynamic state, these tasks can provide advanced 
warning and lead time for preparing the necessary 
corrective actions to maintain the system in safe 
operation. 
In real systems, often the dynamic states cannot be 
directly observed; on the other hand, measurements 
of parameters or variables related to the system states 
are available, albeit usually affected by noise and 
disturbances. Then, the problem becomes that of 
inferring the system state from the measured 
parameters. Two general approaches exist: i) the 
model-based techniques, which make use of a 
quantitative analytical model of the component 
behavior  [1] and ii) the knowledge-based or model-
free methods, which rely on empirical models built 
on available data of the component behavior [2]-[3]. 
This work falls within the first category for which 
analytical descriptions of the system dynamics and  
 

 
its relation with the measured parameters are 
assumed to be available. 
The soundest model-based approaches to the 
estimation of the state of a dynamic system or 
component build a posterior probability distribution 
of the unknown states by combining the probability 
distribution assigned a priori to the possible states 
with the likelihood of the observations of the 
measurements actually collected  [4]-[5]. In this 
Bayesian setting, the estimation method most 
frequently used in practice is the Kalman filter, 
which is optimal for linear state space models and 
independent, additive Gaussian noises. In this case, 
the posterior distributions are also Gaussian and can 
be computed exactly, without approximations. 
In practice, however, the dynamic evolution of many 
systems and components is non-linear and the 
associated noises are non-Gaussian  [6]. For these 
cases, approximate methods, e.g. analytical 
approximations of extended Kalman (EKF) and 
Gaussian-sum filters and numerical approximations 
of the grid-based filters  [7] can be used, usually at 
large computational expenses. Alternatively, one 
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Efficient diagnosis and prognosis of system faults depend on the ability to estimate the system state on the basis 
of noisy measurements of the system dynamic variables and parameters. The system dynamics is typically 
characterized by transitions among discrete modes of operation, each one giving rise to a specific continuous 
dynamics of evolution. The estimation of the state of these hybrid dynamic systems is a particularly challenging 
task because it requires keeping track of the transitions among the multiple modes of system dynamics 
corresponding to the different modes of operation. In this paper a Monte Carlo estimation method is illustrated 
with an application to a case study of literature which consists of a tank filled with liquid, whose level is 
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actuators, whose states are estimated by a Monte Carlo-based particle filter on the basis of noisy level and 
temperature measurements. 
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may resort to Monte Carlo sampling methods also 
known as particle filtering methods, which are 
capable of approximating the continuous 
distributions of interest by a discrete set of weighed 
‘particles’ representing random trajectories of system 
evolution in the state space and whose weights are 
estimates of the probabilities of the trajectories [8]-
[11]. 
The state estimation task becomes quite challenging 
for systems with a hybrid dynamic behavior 
characterized by continuous states and discrete 
modes. Sudden transitions of the discrete modes, 
often autonomously triggered by the continuous 
dynamics, affect the system evolution and a large 
computational effort is required to keep track of the 
multiple models of the discrete system modes and the 
autonomous transitions between them [12]. 
In this paper, particle filtering is applied for the 
estimation of the state of a hybrid system of literature 
often taken as a benchmark for dynamic reliability 
estimation and fault diagnosis/prognosis methods 
[13]-[16]. The system consists of a tank filled with a 
liquid whose level is autonomously maintained 
between two thresholds by actuators driving three 
fillings and emptying flows triggered by the actual 
liquid level. The actuators discrete mode is estimated 
by the particle filter on the basis of noisy level and 
temperature measurements. 
 
2. Model-based state estimation by Monte 
Carlo sampling 
 
2.1. General framework  

Let us consider a continuous system whose evolution 
can be described by:  
 

   ( )ωxf
x

,=
dt

d
 (1) 

 
where x  is the system state vector, 

xx nnn RRR →× ω:f  is possibly non-linear and ω is an 
independent identically distributed (i.i.d.) state noise 
vector of known distribution. 
The state x cannot in general be directly observed; 
rather, information about x can be inferred from the 
observation of a related variable z whose relation to 
the state x is described in general terms by the 
equation: 
 
   ( )υxhz ,=  (2) 
 
where xx nnn RRR →× ω:h  is possibly non-linear and 
υ is an i.i.d. measurement noise vector sequence of 
known distribution. The measurements z are, thus, 

assumed to be conditionally independent given the 
state process x. 
The practical implementation of computational tools 
for state estimation requires that the continuous 
system dynamics be discretized appropriately. 
Regardless of the discretisation method adopted, the 
system state dynamics can be represented by an 
unobserved (hidden) Markov process of order one: 
 
   ( )11 −−= kkk ,ωxfx  (3) 
 
where xx nnn

k RRR →× ω:f  is possibly non-linear and 

{ }Ν∈kk ,ω  is an independent identically distributed 
(i.i.d.) state noise vector sequence of known 
distribution. 
The transition probability distribution p(xk|xk-1) is 
defined by the system equation (3) and the known 
distribution of the noise vector ωk. The initial 
distribution of the system state p(x0) is assumed 
known. 
A sequence of measurements { }Ν∈kk ,z  is assumed 
to be collected at the successive time steps tk. The 
sequence of measurement values is described by the 
measurement (observation) equation: 
 
   ( )kkkk υxhz ,=  (4) 
 
where xx nnn

k RRR →× ω:h is possibly non-linear and 

{ }Ν∈kk ,υ  is an i.i.d. measurement noise vector 
sequence of known distribution. The measurements 
{ }Ν∈kk ,z  are, thus, assumed to be conditionally 

independent given the state process { }Ν∈kk ,x . 
Within a Bayesian framework, the filtered posterior 
distribution p(xk|z0:k) can be recursively computed in 
two stages: prediction and update [4], [17]. 
Given the probability distribution p(xk-1|z0:k-1) at time 
k–1, the prediction stage involves using the system 
model (3) to obtain the prior probability distribution 
of the system state xk at time k via the Chapman-
Kolmogorov equation: 
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where the Markovian assumption underpinning the 
system model (3) has been used. 
At time k, a new measurement zk is collected and 
used to update the prior distribution via Bayes rule, 
so as to obtain the required posterior distribution of 
the current state xk [17]: 
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where the normalizing constant is 
 

   ( ) ( ) ( )∫ −− = kkkkkkk dxxzpzxpzzp 1:01:0  (7) 

 
The recurrence relations (5) and (6) form the basis 
for the exact Bayesian solution. Unfortunately, 
except for a few cases, including linear Gaussian 
state space models (Kalman filter) and hidden finite-
state space Markov chains (Wohnam filter), it is not 
possible to evaluate analytically these distributions, 
since they require the evaluation of complex high-
dimensional integrals. 
This problem can be circumvented by resorting to 
Monte Carlo sampling methods [5], [9], [18]-[19]. 
Writing the posterior probability p(x0:k|z0:k) of the 
entire state sequence x0:k given the measurement 
vector z0:k as: 
 

   ( ) ( ) ( )∫ −= kkkkkkk dpp :0:0:0:0:0:0:0 ξxξzξzx δ  (8) 

 
and assuming that the true posterior probability 
p(x0:k|z0:k)  is known and can be sampled, an estimate 
of (8) is given by [20]: 
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where xi

0:k, i = 1, 2,…, Ns is a set of independent 
random samples drawn from p(x0:k|z0:k). 
Since, in practice, it is usually not possible to sample 
efficiently from the true posterior distribution 
p(x0:k|z0:k), importance sampling is used, i.e. the state 
sequences xi

0:k are drawn from an arbitrarily chosen 
distribution π(x0:k|z0:k), called importance function 
[20]. The probability p(x0:k|z0:k) is written as: 
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and an unbiased estimate is obtained by [5], [17]: 
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where: 
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is the importance weight associated to the state 
sequence xi

0:k, i = 1,2,…,Ns, sampled from π(x0:k|z0:k) 
and p(z0:k|x

 i
0:k) is the likelihood of the observation 

sequence. 
Computing the weight requires knowledge of the 

( ) ( ) ( )∫= kkkkk dppp :0:0:0:0:0 xxxzz , normalizing 

constant, which cannot typically be expressed in 
closed form. It can be shown that, to overcome this 
problem, an estimate of the posterior probability 
distribution p(x0:k|z0:k) may be computed as [5], [17]: 
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where the “Bayesian” importance weights ikw~  are 

given by: 
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For on-line applications, the estimate of the 
distribution p(x0:k|z0:k) at the k-th time step can be 
obtained from the distribution p(x0:k-1|z0:k-1) at the 
previous time step by the following recursive 
formula obtained by extension of equation (6) for the 
Bayesian filter p(xk|z0:k) [5], [17]: 
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Again, use has been made of the fact that the system 
model (1) is Markovian of order one and that the 
observations governed by the measurement equation 
(2) are conditionally independent given the system 
state sequence. 
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Furthermore, if the importance function is chosen 
such that: 
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the following recursive formulas for the non-
normalized weights i

kw* and i
kw can be obtained: 
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The choice of the importance function is obviously 
crucial for the efficiency of the estimation. In this 
work, the prior distribution of the hidden Markov 
model is taken as importance function, i.e. π(xk|x

i
0:k-

1|z0:k) = p(xk|x
i
k-1), and the resampling is applied at 

each time step. Many efficient resampling techniques 
are available in literature [21]; in order to enhance 
readability and focus on tackling the hybrid nature of 
the system, in what follows we shall refer to the 
basic resampling algorithm [22]-[23]. Prior to 
resampling, the non-normalized weights (18), would 
then be: 
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However, since the resampling is performed at every 
iteration, s

i
k Nw 11 =−  and after normalization the 

updated weight simply becomes equal to the 
likelihood of the measurement zk, viz. 
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2.2. Hybrid system 

Let us consider a hybrid system whose dynamic 
evolution can be described by: 
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βk = {1,2,3,…,M} is the discrete state which 
indicates the mode in which the system is evolving at 
time k, 

kβf  is the non-linear function describing the 

(discretized) continuous evolution of system state x 
when the system is in mode βk at time k, kg  is the 
discrete mode transition function. In what follows, 
we shall consider only autonomous transitions 
between the system modes, i.e. those triggered by the 
control of the continuous state x which demands 
transitions among the system modes when reaching 
specified thresholds. 
Let ( )i

k
i
k

i
ks x,β=  indicate the thi  sample of the 

extended hybrid system state, where i
kx  is the 

random sample drawn from the importance function 

( )i
kkp 1−xx  and i

kβ  is the corresponding discrete 

mode of system behavior. Then, the posterior 
probability density of the continuous and discrete 
states can be represented by the random measure 
{ }s

i
k

i
k Niws ...1,, = , where i

kw  is the particle weight of 

the thi  sample of the hybrid state at time k after 
resampling. 
The particle filtering algorithm for the hybrid state 
estimation may be summarized as follows: 
• Predict Cycle (Importance sampling) 

− Importance-sample the system continuous 
states 
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• Filter or update cycle 

− Compute the weights 
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− Resampling which includes normalizing the 

weights, bootstrap-sample the system states 
with replacement and update the weights, 
respectively: 
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• Estimate the system mode as the most likely 
one: 
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where { }jiG i
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• Compute the posterior estimate mean of the 
continuous state kx  and its variance 2ˆ

kσ : 
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where only the particles belonging to the most likely 

mode i
kβ̂  are considered { }i

k
i
kj iG ββ ˆˆ == . 

 
3. Application to a tank control system  

The particle filter estimation algorithm is applied to a 
hybrid system of literature [13]-[16]. The system 
consists of a tank containing a fluid whose level is 
controlled by three control units which open or close 
depending on the fluid level crossing of predefined 
thresholds (HLV and HLP) (Figure 1). The fluid in 
the tank is uniformly heated, under adiabatic 
conditions, by a thermal power source W. 
The control aims at maintaining the fluid level x1 in 
the range (x1,min = HLV, x1,max = HLP), while also 
monitoring the fluid temperature x2 which may 
become relevant from a safety point of view. 
 

 

Figure 1. Tank control system  [13]-[16] 
 

The operational states of the control units at time k 
are described by the Boolean indicator αl,k, l = 1,2,3, 
where αl,k assumes the value 1 or 0 according to 
whether the unit is on (αl,k = 1) or off (αl,k = 0). The 
autonomous control actions modify the states αl,k of 
the units according to the following rules: 
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Thus, the following four modes of system dynamic 
evolution may be identified: 
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With the additional simplifying physical 
assumptions: 
• the fluid input in the tank by units 1 and 3 mixes 

instantaneously 
• the flow rate through the outlet unit 2 is 

independent of the fluid level 
and the discretisation of the system dynamics, the 
time evolution of the states   and   can be described 
by two first-order, decoupled, non-linear difference 
equations determined by the mass and energy 
conservation laws  [13]: 
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where Qj,k, j = 1,2,3, are the fluid flow rates (m/h) at 
time k for units 1, 2 and 3, respectively, mϑ  is the 
assigned inlet fluid temperature, t∆  is the time step, 

k,1ω  and k,2ω  are the process noises  accounting for 

the unmodeled dynamics. 
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In spite of its simple structure, the system considered 
is representative of the operation of non-linear 
control systems and possesses mathematical features 
which pose difficulties to the application of 
conventional model-based estimation techniques. For 
instance, the linearization of the original differential 
equations required by the extended Kalman filter 
approach is not applicable because of the stepwise 
dependence of the parameters αl, l = 1,2,3, on the 
system variable x1. 
The aim of the analysis is that of estimating the 
discrete mode of the system, i.e. the operational 
states of the three control units on the basis of Ns 
trajectories drawn from the system model (31) and a 
sequence of noisy measurements of the level x1,k and 
the temperature x2,k: 
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where k,1υ  and k,2υ  are the measurement noises. 

Knowledge of the system mode of operation allows 
the proper control and maintenance of its 
components. 
The dynamic evolution of the fluid level and 
temperature has been simulated resorting to (31). Let 
us suppose that the control system starts from 

60,1 =x m and 100,2 =x m. The time horizon 

considered for the evolution of the system dynamics 
is h40=tN , with level and temperature observations 

at discrete time steps of min 30=∆t  ( 80=kN ). As 
in the application of reference [13], the inlet fluid 
temperature is 15=mϑ ºC, the level thresholds are set 
at HLV = 4m and HLP = 10m and the fluid flow rates 
are m/h 11 =Q , m/h 42 =Q  and m/h 5.43 =Q . A 
zero – mean Gaussian noise with variance 

0025.02 =Qσ  is added to the flow rates, for closer 

adherence to reality. 
The process and the measurement noises are 
assumed Gaussian with zero mean and variances 

[ ]01.0  02.02 =ωσ  and [ ]05.0  16.02 =υσ  respectively. 
Assuming independence of the level and temperature 
measurements, the observation likelihood in (20) can 
be written as: 
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First, a crude, measurement-based, empirical 
algorithm is proposed for the estimation of the mode 

kβ  at time k: 
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where kz ,1  is the level measurement at time k. 

Figure 2 shows the estimated mode β̂  (dot-dashed 
line) and the model simulated one β  (solid line). 
The performance is not satisfactory because the noise 

1υ  generates spurious oscillations in the level 

measurement 1z  with respect to the model-simulated 

1x  actually driving the mode transitions. 
 

 

Figure 2. Measurement-based estimated system 
modes (dotted line) and model-based simulated 
system modes (solid line). 
 

 

Figure 3. Fluid level measurements (dotted line), 
with measurement noise uncertainty 

1
1 υσ±  bands 

(solid line); model-simulated fluid level (dots). 
 
To overcome this problem, the particle filter of 
Section  2.2 (Figure 3) is implemented with a number 
of particles 1000=sN . Figure 4 shows the particle 
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filter-estimated mode β̂  (dot-dashed line) and the 
model simulated one β  (solid line). The agreement 
is satisfactory, with the only exception at the first 
time when the system enters mode 4=β , i.e. the 
fluid level is higher than HLP. 
 

 

Figure 4. Particle filter-estimated (dotted line) and 
model-simulated (solid line) modes. 
 
This is due to the fact that the first few observations 
of the fluid level higher than HLP do not provide the 
filter with enough information for properly 
performing the mode estimation. This is confirmed in 
Figure 5, where the estimated level 1x̂  (dotted) is 

affected by a larger uncertainty k,1σ̂  when 

approaching the threshold HLP for the first time. 
For completeness, Figure 6 shows the good particle 
filtering capability of estimating also the second state 
variable, i.e. the temperature x2. 
The mode estimation capability of the algorithm in 
(34) is clearly affected by the level measurement 
noise variance 2

1υσ . Indeed, for 02

1
=υσ  the algorithm 

would always yield the correct mode estimate. 
 

 
Figure 5. Particle filter-estimated mean fluid level 
(dotted line), with kσ̂1±  uncertainty bands (solid 
line) and model-simulated fluid level (dots). 
 
In this regard, a sensitivity analysis has been 
performed in which the performances of the crude, 
measurement-based algorithm (34) and of the 

particle filter are compared for different values of the 
level measurement noise. For the comparison, the 
following figure of merit has been introduced: 
 

   
M

M
I ε=  (35) 

 
where εM  is the number of time steps for which the 

model-simulated fluid level falls outside the kσ̂1±  
uncertainty and around the estimated mean, and 
M=80 is the total number of time steps in the 
observation period. 
Table 1 shows the values of I for the crude algorithm 
(34) (second column) and for the particle filter (third 
column). When 10.02

1
=υσ , the crude algorithm 

achieves a perfect performance, i.e. correctly 
identifies the evolution mode of the system at every 
time step, since the fluid level measurement z1 is 
very similar to the actual fluid level x1. As the 
variance of the mean on the fluid level measurement 
increases, the performance of the crude algorithm 
rapidly degenerates with respect to the particle 
filtering. The large values of I for the smallest two 
values of 2

1υσ  are due to the well – known 

degeneracy of the likelihoods (33) as 02

1
→υσ , 

whereas the value of I for 22.02

1
=υσ  is indicating 

that, above certain noise levels, no useful 
information can be extracted from the measurement. 
 
Table 1. Sensitivity test results: the case presented at 
the beginning of the Section is highlighted. 

2

1υσ  
1z

I  
1x

I  

0.10 0 0.125 
0.13 0.012 0.050 
0.16 0.075 0.025 
0.19 0.100 0.025 
0.22 0.100 0.037 

 

 

Figure 6. Particle filter-estimated mean of the fluid 
temperature (dotted line), with kσ̂1±  uncertainty 



Cadini Francesco, Avram Diana, Zio Enrico  
Particle filtering for the estimation of system mode of operation 

 

 84 

bands (solid line) and simulated fluid temperature 
(dots). 
 
4. Conclusion 

In this paper, a Monte Carlo-based filter has been 
devised for estimating both the continuous states and 
the discrete modes of a controlled system, whose 
transitions between the discrete modes are 
autonomously triggered by the continuous states. 
Comparison with a crude algorithm which bases its 
estimates directly on the observed measurements, 
shows the higher performance of the particle filter on 
a wider range of measurements noises, thus 
counterbalancing the larger computational effort 
required. 
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