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Abstract

Efficient diagnosis and prognosis of system fadépend on the ability to estimate the system statde basis

of noisy measurements of the system dynamic vasabhd parameters. The system dynamics is typically
characterized by transitions among discrete mofleperation, each one giving rise to a specifictcmous
dynamics of evolution. The estimation of the sttthese hybrid dynamic systems is a particulanigllenging
task because it requires keeping track of the itians among the multiple modes of system dynamics
corresponding to the different modes of operatinrthis paper a Monte Carlo estimation methodlissitated
with an application to a case study of literatureioln consists of a tank filled with liquid, whoseveél is
autonomously maintained between two thresholds. 3ystem behavior is controlled by discrete mode
actuators, whose states are estimated by a Mome-Rased patrticle filter on the basis of noisydieand
temperature measurements.

1. Introduction

Fault detecti isolati q . tuci its relation with the measured parameters are
ault detection, isolation and prognosis are ctucia ., med to be available.

tasks for the safe and economic operation of moderg . <ondest model-based approaches to the

plants._ Based on the estimation of_the Syste'rsstimation of the state of a dynamic system or
dyna_mlc state, the_se tasks can _prowde advance omponent build a posterior probability distribatio
warning and I.ead time fqr preparing the NECESSANGt the unknown states by combining the probability
corrective actions to maintain the system in Safedistribution assigned a priori to the possible estat

operation. . with the likelihood of the observations of the
In real systems, often the dynamic states cannot bﬁ1easurements actually collected [4]-[5]. In this
directly observed; on the other hand, measurementgayesian setting, the estimation metﬁod most
of parameters or variables related to the systaimst requently used i1n practice is the Kalman filter
are available, albeit usually affected by noise ancgN '

disturb Th th bl b that hich is optimal for linear state space models and
disturbances. e€n, the problem becomes tha Ondependent, additive Gaussian noises. In this, case
inferring the system state from the measuredt

A he posterior distributions are also Gaussian amd c
parameters. Two general approaches exist: i) th%e computed exactly, without approximations.

mode!-ba_lsed techr_nques, which make use of 4n practice, however, the dynamic evolution of many
guantitative analytical model of the componentsys,[emS and components is non-linear and the

behavior [1] and '.') the knowledg(_e—_based or mOd?I'associated noises are non-Gaussian [6]. For these
free m_ethods, which rely on empirical mpdels built cases, approximate methods, e.g. analytical
o?].avallaEI(? clilata po[her(]:or?ponent beha\;lor [2'2]'.[33] approximations of extended Kalman (EKF) and
This work fa S.W'.t In the first category or WNICN -~ =3 ussian-sum filters and numerical approximations
analytical descriptions of the system dynamics and of the grid-based filters [7] can be used, usuatly

large computational expenses. Alternatively, one
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may resort to Monte Carlo sampling methods alsoassumed to be conditionally independent given the

known as particle filtering methods, which are
capable of approximating the continuous
distributions of interest by a discrete set of \heid
‘particles’ representing random trajectories oftegs

state process.

The practical implementation of computational tools
for state estimation requires that the continuous
system dynamics be discretized appropriately.

evolution in the state space and whose weights arRegardless of the discretisation method adopted, th

estimates of the probabilities of the trajectofigls
[11].

system state dynamics can be represented by an
unobserved (hidden) Markov process of order one:

The state estimation task becomes quite challenging

for systems with a hybrid dynamic behavior

3)

Xk = f (Xk—l’mk—l)

characterized by continuous states and discrete

modes. Sudden transitions of the discrete mode

computational effort is required to keep track loé t

. n, X n, . n, H _li
often autonomously triggered by the continuous%,\lhere‘tk'R R R™ is possibly non-linear and

dynamics, affect the system evolution and a Iarge{mkkaN

} is an independent identically distributed
(i.i.d.) state noise vector sequence of known

multiple models of the discrete system modes aed thdistribution.

autonomous transitions between them [12].
In this paper, particle filtering is applied foreth
estimation of the state of a hybrid system of ¢tere

The transition probability distributiom(X|Xk.1) is
defined by the system equation (3) and the known
distribution of the noise vectow,. The initial

often taken as a benchmark for dynamic reliability distribution of the system state(xo) is assumed
estimation and fault diagnosis/prognosis methodsknown.

[13]-[16]. The system consists of a tank filled hwa
liqguid whose level is autonomously maintained

A sequence of measuremeris,k[IN} is assumed
to be collected at the successive time stgp3he

between two thresholds by actuators driving threesequence of measurement values is described by the

fillings and emptying flows triggered by the actual
liquid level. The actuators discrete mode is editha
by the particle filter on the basis of noisy lewaeld
temperature measurements.

2. Model-based state estimation by Monte
Carlo sampling

2.1. General framework

Let us consider a continuous system whose evolutio
can be described by:

d)t( :f(x,m)

(1)

where X is the system state vector,
f:R™ xR™ - R™ is possibly non-linear and is an
independent identically distributed (i.i.d.) staigise
vector of known distribution.

The statex cannot in general be directly observed;
rather, information about can be inferred from the
observation of a related varialdevhose relation to
the statex is described in general terms by the
equation:

z=h(x,v) 2)

where h: R™ x R™ —, R™ is possibly non-linear and

measurement (observation) equation:

Zk :hk(xk’vk)

(4)

whereh, :R™ x R™ - R™is possibly non-linear and

{v..kON} is an iid. measurement noise vector
sequence of known distribution. The measurements
{z..kON} are, thus, assumed to be conditionally

independent given the state procgssk N} .

Within a Bayesian framework, the filtered posterior
distribution p(xzox) can be recursively computed in
two stagespredictionandupdate[4], [17].

Given the probability distributiop(Xy.1|Zox.1) at time
k-1, the prediction stage involves using the system
model (3) to obtain the prior probability distribo

of the system statg, at timek via the Chapman-
Kolmogorov equation:

p(Xk|ZO:k—1) = J. p(Xk|Xk—1|ZO:k—1)p(Xk—1|ZO:k—1)ka—1 =

)
_[ p(Xk |Xk—1)p(xk—1|zo:k—1 )dX k-1

where the Markovian assumption underpinning the
system model (3) has been used.

At time k, a new measuremeny is collected and
used to update the prior distribution via Baye® rul
SO as to obtain the required posterior distributdbn
the current state, [17]:

v is an i.i.d. measurement noise vector sequence of

known distribution. The measuremergsare, thus,
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X, |Z, Z, |X ! !
p(Xk|ZO:k)= p( k| O.k—l)p( k| k) (6) Wi = p(ZO:k|XO:k)ip(X0:k) (12)
p(zk |ZO:k—1) p(zo:k )”(Xo:k |Zo:k )
where the normalizing constant is is the importance weight associated to the state
sequence'oy, i = 1,2,...Ns, sampled fronz(Xox|Zox)
p(zk|%:k_1): I D(Xklzo;k_l)p(zklxk )dxk (7)  andp(zoulx ‘o) is the likelihood of the observation
sequence.
. .C ting th ight [ knowled f th
The recurrence relations (5) and (6) form the basis c()mp)u_lng( ° Wj‘lg( ;gquwes nowte gT. 9 ©
for the exact Bayesian solution. Unfortunately, P\Zox _Ip201k|xoik PXoi JMXoc hormalizing

except for a few cases, including linear Gaussiarconstant, which cannot typically be expressed in
state space models (Kalman filter) and hiddendinit closed form. It can be shown that, to overcome this
state space Markov chains (Wohnam filter), it i$ no problem, an estimate of the posterior probability
possible to evaluate analytically these distrimgjo distributionp(Xox|zox) may be computed as [5], [17]:
since they require the evaluation of complex high-

dimensional integrals. . N ,

This problem can be circumvented by resorting to p(X(Ik|ZO.k):Z ké(XO:k _Xo.k) (13)
Monte Carlo sampling methods [5], [9], [18]-[19]. =1

Writing the posterior probabilityp(Xex|zox) of the _

entire state sequence, given the measurement where the “Bayesian” importance weightg, are

vectorzgy as: given by:
p(X(Ik|ZO:k):I p( 0:k|ZO:I<)5( ok _XO:k )dgo:k (8) \7\-/:( — N:N:( (14)
]
and assuming that the true posterior probability ;W"
p(Xox|Zox) is known and can be sampled, an estimate
f (8) is qi by [20]: i i
of (8) is given by [20] " p(zozk‘x'o:k)p(X'o:k)_ plz.) 15
1 N, . k n(XiUk|ZO'k) =W p Zok ( )
ﬁ(x(}.k|ztlk):N_25(XO:k _XIO:k) (9) - -
s i=1

For on-line applications, the estimate of the

wherexow, i = 1, 2,...,Ns is a set of independent distribution p(Xo|o) at thek-th time step can be
random samples drawn frop(Xox|Zox). obta!ned frpm the dlStI‘IbUtIOf}D(Xo;k_1|29;k_1) at the'
Since, in practice, it is usually not possible ample ~ Prévious time step Dby the following recursive
efficiently from the true posterior distribution formula obtained by extension of equation (6) fu t
P(Xox|Zei), importance sampling is used, i.e. the stateBayesian filtem(xi|zoi) [5], [17]:
sequences'ox are drawn from an arbitrarily chosen

distribution m(xox|zox), called importance function _ p(XO:k|Zo:k—1)p(zk|xo:k|20ck—1)_
[20]. The probabilityp(Xok|Zok) is written as: ( &k|zak)‘ p(2k|20k 1) -

p(xk |X0:k—1|ZO:k—1)p(XO:k—1|Z(Ik—1) p(zk |X0:k |ZO:I<—1) _

p(XO:k|ZQk): J’ﬂ(gak|2&k )%5( ok XO:k )dgo:k = p(Zk|ZQk_1)

(16)
(10) - p(Xk|X0:k—1)p(xo:k—1|zo:k—l)p(zk|XO:k) -
and an i i i i . p(zk|z(xk—1)
unbiased estimate is obtained by [5], [17]:
— (X \ p(zk|XO:k)p(Xk|X(kk—1)
.. 1% . = Pleawaacs) P(z.|20s)
p (X(Ik|ZO:k):N_ZWkI J(Xo:k _Xlo:k) (11) KImok
s i=l

Again, use has been made of the fact that therayste

where: model (1) is Markovian of order one and that the
observations governed by the measurement equation
(2) are conditionally independent given the system
state sequence.
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Furthermore, if the importance function is chosen (x =f ( kl,mkl)
such that: (21)
lBk k(ﬂk—l’ k—l)
k
n(xoik|zo:k)=n(xo|zo)|_l 77(xj xo:j,l‘zozj)z fc = {1,2,3,...M} is the discrete state which
i= (17)  indicates the mode in which the system is evoldng
:77(xk|x0:k_1|20:k) xO:k_1|zO:k_1) timek, f, is the non-linear function describing the

(discretized) continuous evolution of system state
the following recursive formulas for the non- when the system is in mogk at time k, g, is the

normalized weightsy,' and w, can be obtained: discrete mode transition function. In what follows,
we shall consider only autonomous transitions
_ ( ] |z . ) between the system modes, i.e. those triggereldeby t
W = = control of the continuous state which demands
Xo:k|zo:k transitions among the system modes when reaching
_ p( ‘x‘) ( i‘XL_l) specified thresholds.
p(XIO'k—1|Z(}k—1/ oz Tz, Let si(z( ,'(x'k) indicate the i sample of the

= extended hybrid system state, wherg¢ is the
”(X |X0k 1|20k)ﬂ(X0k 1 Z - 1) . .
random sample drawn from the importance function

( ‘X) ( ‘Xk 1) 1 (18) p(xk‘x‘k_l) and B is the corresponding discrete

”(X ‘Xo“ Ok) k|zk 1) mode of system behavior. Then, the posterior
probability density of the continuous and discrete
states can be represented by the random measure

W ( |X ) ( |Xk 1) {sL,vx/k,i =1...NS}, wherew, is the particle weight of

w, =W, p(zy, ) =W, _ _ _
77(X |X0k 1|20k) the i™ sample of the hybrid state at tinkeafter
resampling.
The choice of the importance function is obviously The particle filtering algorithm for the hybrid sta
crucial for the efficiency of the estimation. Inigh ~estimation may be summarized as follows:
work, the prior distribution of the hidden Markov * Predict Cycle (Importance sampling)

model is taken as importance function, X ok — Importance-sample the system continuous
1|Zox) = p(xX'k1), and the resampling is applied at states

each time step. Many efficient resampling technsque

are available in literature [21]; in order to enban X} :,T(X(xk|20ck) (22)

readability and focus on tackling the hybrid natofe
the system, in what follows we shall refer to the
basic resampling algorithm [22]-[23]. Prior to
resampling, the non-normalized weights (18), would

» Filter or update cycle
Compute the weights

then be:
o Pzl
_ _ i (23)
Wk =Vvlk—1p(zk‘xk) (19) ]T(X ‘Xok -1 Ok)
However, since the resampling is performed at every — Resampling which includes normalizing the
iteration, w, , =1/N, and after normalization the weights, bootstrap-sample the system states
updated weight simply becomes equal to the with re_plac_ement and update the weights,
likelihood of the measuremeny, viz. respectively:
~ i ~ . NS .
@, = plz,Jx.) (20) W =w,/ 3w (24)
=1
2.2. Hybrid system o
. | %= Pz (25)
Let us consider a hybrid system whose dynamic
evolution can be described by: _
w, =1/N, (26)
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one:

B, =arg maxy_ w, (27)

i0G,
Whereéj ={i‘,8f( = j}.

continuous state, and its variance; :

WX
QK:M (28)
iDéWk
Ne R
Zwk(xlk_xk)
Gl (29)

|DGWk

where only the particles belonging to the mostljike
mode 3. are considereéj ={i‘,8i = ,@;}

3. Application to atank control system

The particle filter estimation algorithm is applitda
hybrid system of literature [13]-[16]. The system
consists of a tank containing a fluid whose lewel i
controlled by three control units which open orselo
depending on the fluid level crossing of predefined
thresholds KILV andHLP) (Figure 1). The fluid in
the tank is uniformly heated, under adiabatic
conditions, by a thermal power source W.

The control aims at maintaining the fluid lewglin
the range Xumin = HLV, Xy max = HLP), while also
monitoring the fluid temperature; which may
become relevant from a safety point of view.

LIQUID
SUPPLY

LIQUID
SUBPLY

b H (meters)

INFLOW

10

OUTFLOW

Figure 1 Tank control system [13]-[16]
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Compute the posterior estimate mean of the

Estimate the system mode as the most likelyThe operational states of the control units at tkme

are described by the Boolean indicadgyg, | = 1,2,3,
where o;x assumes the value 1 or 0 according to
whether the unit is o, = 1) or off @k = 0). The
autonomous control actions modify the staigsof
the units according to the following rules:

1 if x, <HLP
=40 if x, >HLP
Oorl dependingn previousswitching

al, k

oL i x> HLY
2710 otherwise

1 if x <HLV
a, =40 if x, >HLP
Oorl dependingn previousswitching

Thus, the following four modes of system dynamic
evolution may be identified:

1 if x, <HLV
_ |2 if HLV <x,, <HLPanda,, , =a, =1
A=\3 it HL < X, <HLPanda,, , =a,,, =0
4 if x, >HLP
(30)
With  the additional simplifying  physical

assumptions:

the fluid input in the tank by units 1 and 3 mixes
instantaneously

the flow rate through the outlet unit 2 is
independent of the fluid level

and the discretisation of the system dynamics, the
time evolution of the states and can be desdrib
by two first-order, decoupled, non-linear differenc
equations determined by the mass and energy
conservation laws [13]:

Xk =Xy At[al.k—lQl,k—l + aS,k—lQS,k—l -
- az,k—lQZ,k—l] T,

At
Xk = Ko t _{ [al,k—lQl,k—l + a3,k—1Q3.k—l
k-1

ERED
(8, - %, )+ 2388915 +

whereQ,, j = 1,2,3, are the fluid flow rates (m/h) at
time k for units 1, 2 and 3, respectively, is the
assigned inlet fluid temperaturdf is the time step,
«,, anda,, are the process noises accounting for
the unmodeled dynamics.
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In spite of its simple structure, the system com®d  First, a crude, measurement-based, empirical
is representative of the operation of non-linearalgorithm is proposed for the estimation of the mod
control systems and possesses mathematical features at timek:

which pose difficulties to the application of
conventional model-based estimation techniques. For
instance, the linearization of the original diffietial
equations required by the extended Kalman filter B —
approach is not applicable because of the stepwise
dependence of the parametess| = 1,2,3, on the

system variable;.

The aim of the analysis is that of estimating the (34)
discrete mode of the system, i.e. the operational

states of the three control units on the basid\of Wherez, is the level measurement at titne

trajectories dravyn from the system model (31) and Figure 2 shows the estimated mocﬁ (dot-dashed
sequence of noisy measurements of the leyeand line) and the model simulated ong (solid line).

the temperaturggy: ) ) )
The performance is not satisfactory because theenoi
U, generates spurious oscillations in the level
(32) measurement, with respect to the model-simulated
x, actually driving the mode transitions.

if z, <HLV
if HLV <z, <HLPanda,,, =a,,, =1
if HLV <z, <HLPanda,,,=a,,,=0
if z,>HLP

A W DN

Z =Xy T U
Zy = Xou T Uq

where v, and v, are the measurement noises.
Knowledge of the system mode of operation allows
the proper control and maintenance of its
components.

The dynamic evolution of the fluid level and
temperature has been simulated resorting to (3t). L
us suppose that the control system starts from
X,=6m and Xx,,=10m. The time horizon
considered for the evolution of the system dynamics
is N, =40h, with level and temperature observations ,
at discrete time steps dft =30 mi@N, =80). As Time [

in the application of reference [13], the inletiflu  Figure 2 Measurement-based estimated system
temperature is? = 1%, the level thresholds are set modes (dotted line) and model-based simulated
atHLV = 4m andHLP = 10m and the fluid flow rates system modes (solid line).

are Q=1m/h Q,=4m/h and Q,=45m/h A

zero — mean Gaussian noise with variance il
aé =0.0025 is added to the flow rates, for closer 0
adherence to reality.

The process and the measurement noises are
assumed Gaussian with zero mean and variances

o2 =[002 001 ando? =[016 005 respectively.

Estimated mode
Simulated mode

Estirnated mode wersus simulated rode

Ohservation z,

Assuming independence of the level and temperature Y T - N L N S N | ¢
. . . . - Sirnulated level Hy H H H |
measurements, the observation likelihood in (20@) ca s Messurerencs 2 % B
. +o band | | | |
be written as: =" " i i 1
1) a 10 15 20 25 30 35 40
Time [h]
i = i = . . .
D(Zk‘xk)- I_Izp(zh,k‘xk)_ Figure 3 Fluid level measurements (dotted line),
h=1,

2 2 with measurement noise uncertaitto, bands
i{i] 1 1[7#] (33) s

UU

(solid line); model-simulated fluid level (dots).

2

! To overcome this problem, the particle filter of
Section 2.2Kigure 3 is implemented with a number
of particles N, = 1000 Figure 4 shows the particle

82



SSARS 2009
Summer Safety and Reliability Semindidy 19-25 2009 Gdaisk-Sopot, Poland

filter-estimated modeB (dot-dashed line) and the particle filter are compared for different valuddtue
model simulated ongd (solid line). The agreement level measurement noise. For the comparison, the

_ _ _ _ _ following figure of merit has been introduced:
is satisfactory, with the only exception at thestfir
time when the system enters moge= , i4. the M

fluid level is higher thatLP. I =—= (35)

—+==- Estimated mode

T where M, is the number of time steps for which the
,,,,,,,,, model-simulated fluid level falls outside theld,

uncertainty and around the estimated mean, and
oo M=80 is the total number of time steps in the
I BRI I N A observation period.

oL i Table 1shows the values offor the crude algorithm
(34) (second column) and for the particle filterind

Estimated made versus simulated mode

S """""""" """" T column). When Ji = 010 the crude algorithm
B S achieves a perfect performance, i.e. correctly
et identifies the evolution mode of the system at gver
Figure 4 Particle filter-estimated (dotted line) and ~ time step, since the fluid level measurements
model-simulated (solid line) modes. very similar to the actual fluid levek. As the

variance of the mean on the fluid level measurement

This is due to the fact that the first few obseormt  increases, the performance of the crude algorithm
of the fluid level higher thariLP do not provide the rapidly degenerates with respect to the particle
filter with enough information for properly filtering. The large values df for the smallest two
performing the mode estimation. This is confirmed i values of le are due to the well — known
Figure 5 where the estimated leved (dotted) is

affected by a larger uncertaintyg,, when

approaching the threshold HLP for the first time.

For completenesssigure 6 shows the good particle hat, above certain noise levels, no useful
filtering capability of estimating also the seccsidte information can be extracted from the measurement.

variable, i.e. the temperatuxg o
The mode estimation capability of the algorithm in Table 1.Sensitivity test results: the case presented at

(34) is clearly affected by the level measurementtn® beginning of the Section is highlighted.

degeneracy of the likelihoods (33) asi - ,0

whereas the value df for a,fl = 022 is indicating

noise variances,, . Indeed, forg, = Othe algorithm o | |
would always yield the correct mode estimate. “ “ *

0.10 0 0.125

e 0.13 0.012 0.050

NIRRT IR 0.16 0.075 0.025

. DEA 3 : : ' 3 0.19 0.100 0.025

AT A Y 0.22 0.100 0.037

30

Estimated state x,

it

A e Filtered estimate

G- ;
* H H H [¢:
+  Simulated level : : : :
Eh +-5 band Rt S St St B
HE H H h

ot
=]

T T
[1} 5 10 15 20 25 30 35 40

Estimated state x,

Figure 5 Particle filter-estimated mean fluid level ‘ A
(dotted line), with+ 15, uncertainty bands (solid L A A S |
line) and model-simulated fluid level (dots). Lo -

T T T
1} 4 10 15 20 25 30 35 40
Time [h]

In this regard, a sensitivity analysis has been
performed in which the performances of the crude,
measurement-based algorithm (34) and of the

Figure & Particle filter-estimated mean of the fluid
emperature (dotted line), withlg, uncertainty
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bands (solid line) and simulated fluid temperature
(dots).

based component replacemeReliab. Eng. and
Sys. Saf94, 752-758.

Cadini, F., Zio, E. & Avram, D. (2009). Monte
Carlo-based filtering for fatigue crack growth
estimation.Probabilistic Engineering Mechanics
24, 367-373.

Koutsoukos, X., Kurien, J. & Zhao, F. (2002).
Monitoring and diagnosis of hybrid systems using
particle filtering methods. Proceedings of th&' 15
International Symposium on the Mathematical
Theory of Networks and Systems (MTNS).

Wang, P., Chen X.M. & Aldemir, T. (2002).
DSD: a Generic Software Package for Model-
Based Fault Diagnosis in Dynamic Systems,
Reliab. Eng. and Sys. S&b, 31-39.

Aldemir, T., Siu, N., Mosleh, A., Cacciabue, P.C.
& Goktepe, B.G. (1994). Eds.: Reliability and
Safety Assessment of Dynamic Process Systems.

[11]
4. Conclusion

In this paper, a Monte Carlo-based filter has been

devised for estimating both the continuous staels 3512]
the discrete modes of a controlled system, whose
transitions between the discrete modes are
autonomously triggered by the continuous states.

Comparison with a crude algorithm which bases its

estimates directly on the observed measuremer[\i%,]
shows the higher performance of the particle fitter

a wider range of measurements noises, thus
counterbalancing the larger computational effort

required. [14]
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