PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of the amount of waste cold from liquefied natural gas (LNG) regasification for gas-fuelled low-speed main engines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Existing and future regulations on ship energy efficiency and methods for their improvement are presented in this work. The design and operational features of gas-fuelled low-speed main engines, liquefied natural gas (LNG) regasification conditions, and amount of waste cold are compared. Using a simple linear regression model based on the least squares method, formulae were developed to predict the amount of waste cold as a function of the brake power of gas-fuelled low-speed main engines operating under ISO ambient conditions in Tier III-compliant mode. A sufficiently accurate prediction of the waste cold amount at the initial design stage is feasible due to the formulae developed as part of this work
Słowa kluczowe
Rocznik
Strony
69--79
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • School of the Maritime University of Szczecin, Szczecin, Poland - Doctoral
Bibliografia
  • 1. Andreasen, J.G., Meroni, A. & Haglind, F. (2017) A Comparison of Organic and Steam Rankine Cycle Power System for Waste Heat Recovery on Large Ships. Energies 10, 4, 547, doi.org/10.3390/en10040547.
  • 2. Christensen, P.M. (2017) MAN ME-GI Dual-Fuel Engines, Surveyor’s Day Gard/Norwegian Hull Club Bergen. [Online] Available from: https://www.gard.no/Content/ 24305569/Dual%20fuel%20engines.pdf [Accessed: October 23, 2021].
  • 3. DNV (2021) Det Norske Veritas. Technical Regulatory News, No. 10/21 – Statutory, IMO Update: Marine Environment Protection Comitee – MEPC76.
  • 4. Giernalczyk, M., Górski, Z. & Krefft, J. (2015) Reduction methods of oceangoing ships’ fuel consumption by applying different propeller types. Logistyka 6, pp. 1404–1414 (in Polish).
  • 5. IMO (2016) IMO Train the Trainer (TTT) Course on Energy Efficient Ship Operation, Module 2 – Ship Energy Efficiency Regulations and Related Guidelines, pp. 10–22, International Maritime Organization. Available from: https://wwwcdn. imo.org/localresources/en/OurWork/Environment/Documents/Air%20pollution/M2%20EE%20regulations%20 and%20guidelines%20final.pdf [Accessed: October 23, 2021].
  • 6. Korlak, P.K. (2021) Comparative analysis and estimation of amounts of exhaust gas waste heat from the Tier III-compliant dual-fuel low-speed marine main engines. Pomorstvo Scientific Journal of Maritime Research 35, 1, pp. 128–140, doi: 10.31217/p.35.1.14.
  • 7. Liberacki, R. (2019) Niekonwencjonalne metody odzysku ciepła odpadowego na statkach. Journal of Polish CIMEEAC 14, 1/13.
  • 8. MAN Diesel & Turbo (2012) Costs and Benefits of LNG as a Ship Fuel for Container Vessels. [Online] Available from: https://www.mandieselturbo.com/docs/default-source/shopwaredocuments/costs-and-benefits-of-lng3739431d863f4f5695c4c81f03ac752c.pdf?sfvrsn=3 [Accessed: October 23, 2021].
  • 9. MAN Diesel & Turbo (2017) EEDI – Energy Efficiency Dsign Index. [Online] Available from: https://primeserv.manes.com/docs/librariesprovider5/propeller-aftship-brochures/ efficiency-improving-devices/eedi.pdf?sfvrsn=ba0c5ea2_4 [Accessed: October 23, 2021].
  • 10. MAN Energy Solutions (2021) Efficiency of MAN twostroke engines. [Online] Available from: https://mandieselturbo.com/docs/default-source/shopwaredocuments/ efficiency-of-man-b-w-two-stroke-engines.pdf?sfvrsn=1 [Accessed: October 23, 2021].
  • 11. MAN Energy Solutions (2021) MAN ME-GI installation in very large or ultra large container vessels. [Online] Available from: https://www.man-es.com/docs/default-source/ marine/man-es_b-w-me-gi---installation-in-very-large-orultra-large-container-vessels-manpm-00-0507-preview.pdf ?sfvrsn=da22ed71_10 [Accessed: October 23, 2021].
  • 12. MAN Energy Solutions (2021) Marine engine programme. [Online] Available from: https://www.man-es. com/docs/default-source/marine/marine-engine-programme-20205656db69fafa42b991f030191bb3bbb4.pdf?sfvrsn=9cac9964_42 [Accessed: October 23, 2021].
  • 13. Mondejar, M.E., Andreasen, J.G., Pierobon, L., Larsen, U., Thern, M. & Haglind, F. (2018) A Review of the Use of Organic Rankine Cycle Power Systems for Marine Applications. Renewable and Sustainable Energy Reviews 91, pp. 126–151, doi: 10.1016/j.rser.2018.03.074.
  • 14. TT-LINE (2020) TT-Line Green RoPax Ferry. [Online] Available from: https://www.ttline.com/globalassets/pdf/ newbuilding/tt-line-green-ship_en.pdf [Accessed: October 23, 2021].
  • 15. WinGD (2020) Low-pressure X-DF Engines FAQ. [Online] Available from: https://www.wingd.com/en/documents/general/brochures/x-df-faq-brochure.pdf/ [Accessed October 23, 2021].
  • 16. WinGD (2021) Low-speed engines 2021. [Online] Available from: https://www.wingd.com/en/documents/general/brochures/wingd-low-speed-engines-booklet-2021.pdf/ [Accessed: October 23, 2021].
  • 17. Złoczowska, E. & Adamczyk, J. (2017) Analiza możliwości wykorzystania zimna odpadowego z procesu regazyfikacji LNG w teminalu Świnoujście. Rynek Energii 4, pp. 47–55.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9af7a2bc-6d7c-4692-8206-b1bc855c539f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.