PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel approach to type-reduction and design of interval type-2 fuzzy logic systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fuzzy logic systems, unlike black-box models, are known as transparent artificial intelligence systems that have explainable rules of reasoning. Type 2 fuzzy systems extend the field of application to tasks that require the introduction of uncertainty in the rules, e.g. for handling corrupted data. Most practical implementations use interval type-2 sets and process interval membership grades. The key role in the design of type-2 interval fuzzy logic systems is played by the type-2 inference defuzzification method. In type-2 systems this generally takes place in two steps: type-reduction first, then standard defuzzification. The only precise type-reduction method is the iterative method known as Karnik-Mendel (KM) algorithm with its enhancement modifications. The known non-iterative methods deliver only an approximation of the boundaries of a type-reduced set and, in special cases, they diminish the profits that result from the use of type-2 fuzzy logic systems. In this paper, we propose a novel type-reduction method based on a smooth approximation of maximum/minimum, and we call this method a smooth type-reduction. Replacing the iterative KM algorithm by the smooth type-reduction, we obtain a structure of an adaptive interval type-2 fuzzy logic which is non-iterative and as close to an approximation of the KM algorithm as we like.
Rocznik
Strony
197--206
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • Department of Computational Intelligence, Częstochowa University of Technology, al. Armii Krajowej 36, 42-200 Częstochowa, Poland
  • Institute of Information Technologies, University of Social Sciences, ul. Sienkiewicza 9, 90-113 Łódź
  • Institute of Computer Science, AGH University of Science and Technology, 30-059 Kraków, Poland
  • Systems Research Institute of the Polish Academy of Sciences, 01-447 Warsaw, Poland
  • Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto 25 Roma 00185, Italy
Bibliografia
  • [1] Bilski, J., Kowalczyk, B., Marchlewska, A., and Zurada, J. (2020). Local Levenberg-Marquardt algorithm for learning feedforward neural networks. Journal of Artificial Intelligence and Soft Computing Research, 10(4):299–316.
  • [2] Bilski, J., Kowalczyk, B., Marjanski, A., Gandor, M., and Żurada, J. (2021). A novel fast feedforward neural networks training algorithm. Journal of Artificial Intelligence and Soft Computing Research, 11(4):287–306.
  • [3] Bilski, J. and Smol ˛ag, J. (2020). Fast conjugate gradient algorithm for feedforward neural networks. In Rutkowski, L., Scherer, R., Korytkowski,J. M., editors, Artificial Intelligence and Soft Computing, pages 27–38, Cham. Springer InternationalPublishing.
  • [4] Chen, Y. and Wang, D. (2018). Study on centroid type-reduction of general type-2 fuzzy logic systems with weighted enhanced Karnik–Mendel algorithms. Soft Computing, 22(4):1361–1380.
  • [5] De Magistris, G., Russo, S., Roma, P., Starczewski, J. T., and Napoli, C. (2022). An explainable fakenews detector based on named entity recognition and stance classification applied to covid-19. Information, 13(3):137.
  • [6] El-Nagar, A. M. and El-Bardini, M. (2014). Simplified interval type-2 fuzzy logic system based on new type-reduction. Journal of Intelligent & Fuzzy Systems, 27(4):1999–2010.
  • [7] Karnik, N. N., Mendel, J. M., and Liang, Q. (1999). Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems, 7(6):643–658.
  • [8] Liang, Q. and Mendel, J. M. (2000). Interval type2 fuzzy logic systems: Theory and design. IEEE Transactions on Fuzzy Systems, 8:535–550.
  • [9] Maowen Nie and Woei Wan Tan (2008). Towards an efficient type-reduction method for interval type-2 fuzzy logic systems. In 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), pages 1425–1432.
  • [10] Melgarejo, M. (2007). A fast recursive method to compute the generalized centroid of an interval type-2 fuzzy set. In Proc. NAFIPS 2007, pages 190–194.
  • [11] Mendel, J. M. (2017). Uncertain rule-based fuzzy systems. Introduction and new directions, page 684.
  • [12] Nowicki, R. K. and Starczewski, J. T. (2017). A new method for classification of imprecise data using fuzzy rough fuzzification. Inf. Sci., 414:33–52.
  • [13] Nowicki, R. K., Starczewski, J. T., and Grycuk, R. (2019). Extended possibilistic fuzzification for classification. In Guervós, J. J. M., Garibaldi, J., Linares-Barranco, A., Madani, K., and Warwick, K., editors, Proceedings of the 11th International Joint Conference on Computational Intelligence, IJCCI 2019, Vienna, Austria, September 17-19, 2019, pages 343–350. ScitePress.
  • [14] Rojas, J. D., Salazar, O., and Serrano, H. (2016). Nie-Tan Method and its Improved Version: A Counterexample. IngenierÃa, 21:138 – 153.
  • [15] Sepulveda, R., Castillo, O., Melin, P., and Montiel, O. (2007). An efficient computational method to implement type-2 fuzzy logic in control applications. In Melin, P. and et al., editors, Analysis and Design of Intelligent Systems using Soft Computing Techniques, volume 41, chapter 5, pages 45–52. Springer-Verlag, Germany, 1 edition.
  • [16] Starczewski, J. T. (2013). Advanced Concepts in Fuzzy Logic and Systems with Membership Uncertainty, volume 284 of Studies in Fuzziness and Soft Computing. Springer.
  • [17] Starczewski, J. T., Goetzen, P., and Napoli, C. (2020). Triangular fuzzy-rough set based fuzzification of fuzzy rule-based systems. Journal of Artificial Intelligence and Soft Computing Research, 10.
  • [18] Starczewski, J. T., Nowicki, R. K., and Nieszporek, K. (2019). Fuzzy-rough fuzzification in general FL classifiers. In Guervós, J. J. M., Garibaldi, J., Linares-Barranco, A., Madani, K., and Warwick, K., editors, Proceedings of the 11th International Joint Conference on Computational Intelligence, IJCCI 2019, Vienna, Austria, September 17-19, 2019, pages 335–342. ScitePress.
  • [19] Staszewski, P., Jaworski, M., Rutkowski, L., and Tao, D. (2020). Explainable cluster-based rules generation for image retrieval and classification. In Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., and Zurada, J. M., editors, Artificial Intelligence and Soft Computing, pages 85–94, Cham. Springer International Publishing.
  • [20] Wang, L. and Yen, J. (1999). Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and kalman filter. Fuzzy Sets and Systems, 101:353–362.
  • [21] Wu, D. and Mendel, J. M. (2009). Enhanced karnik-mendel algorithms. IEEE Transactions on Fuzzy Systems, 17(4):923–934.
  • [22] Wu, D. and Tan, W. (2005). Computationally efficient type-reduction strategies for a type-2 fuzzy logic controller. In Proc. IEEE Fuzzy Conference, pages 353–358, Reno, NV.
  • [23] Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning — I. Information Sciences, 8:199–249.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9af4e371-cce8-476e-ad7a-070030935479
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.