
JAISCR, 2022, Vol. 12, No. 3, pp. 197

A NOVEL APPROACH TO TYPE-REDUCTION AND
DESIGN OF INTERVAL TYPE-2 FUZZY LOGIC SYSTEMS

Janusz T. Starczewski1,∗, Krzysztof Przybyszewski, 2, Aleksander Byrski3,
Eulalia Szmidt4, Christian Napoli5

1Department of Computational Intelligence, Czȩstochowa University of Technology,
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Abstract

Fuzzy logic systems, unlike black-box models, are known as transparent artificial intelli-
gence systems that have explainable rules of reasoning. Type 2 fuzzy systems extend the
field of application to tasks that require the introduction of uncertainty in the rules, e.g.
for handling corrupted data. Most practical implementations use interval type-2 sets and
process interval membership grades. The key role in the design of type-2 interval fuzzy
logic systems is played by the type-2 inference defuzzification method. In type-2 systems
this generally takes place in two steps: type-reduction first, then standard defuzzification.
The only precise type-reduction method is the iterative method known as Karnik-Mendel
(KM) algorithm with its enhancement modifications. The known non-iterative methods
deliver only an approximation of the boundaries of a type-reduced set and, in special
cases, they diminish the profits that result from the use of type-2 fuzzy logic systems. In
this paper, we propose a novel type-reduction method based on a smooth approximation
of maximum/minimum, and we call this method a smooth type-reduction. Replacing the
iterative KM algorithm by the smooth type-reduction, we obtain a structure of an adaptive
interval type-2 fuzzy logic which is non-iterative and as close to an approximation of the
KM algorithm as we like.
Keywords: smooth type-reduction, interval type-2 fuzzy logic systems

1 Introduction

The need to exercise control over Artificial In-
telligence tools has focused researchers’ interest on

explainable models [5, 19]. Among several explain-
able intelligent methods, fuzzy logic systems are
seen as particularly interesting due to their trans-
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parency of fuzzy rules. However, fuzzy rules oper-
ating in an uncertain or non-stationary environment
require a higher order of fuzziness. Therefore, con-
ditional propositions are frequently equipped with
fuzzy sets of type-2 [23] Such type-2 fuzzy sets are
described with a fuzzified membership function of
the assumed shape. A rectangular shape of mem-
bership fuzzification, in interval type-2 sets, suf-
ficiently describes uncertainty in the modeling of
most practical processes. While other general type-
2 sets, like Gaussian or triangular, are computation-
ally expensive in defuzzification of output informa-
tion, defuzzification of interval type-2 conclusions
requires a sufficiently small number of computa-
tions. Technically, defuzzification of type-2 fuzzy
sets is split into two phases: type-reduction map-
ping from a type-2 to a type-1 fuzzy set, and final
defuzzification into a crisp fuzzy set.

For interval type-2 fuzzy sets, a common de-
fuzzification algorithm is known as the Karnik–
Mendel (KM) iterative procedure [7, 8, 11], which
began two decades of interest in applications of in-
terval type-2 fuzzy logic. In recent years, mostly
modifications of the basic KM algorithm have been
being developed [22, 15, 10]. Optimization of ini-
tial switch points underlie enhanced KM algorithms
[21, 4]. Independent noniterative approaches have
been addressed for solving the centroids of interval
type-2 fuzzy sets as the Nie–Tan algorithm [9, 14]
or the Nagar–Bardini method [6, 4]. However, the
KM algorithm together with its acceleration modifi-
cations is the only accurate type-reduction method,
while the known non-iterative methods just approx-
imate a type-reduced set.

The iteration procedure in the KM algorithm is
time-consuming and make problems with the de-
termination of exact derivatives with respect to pa-
rameters of the type-2 fuzzy system. Moreover, a
standard backpropagation algorithm for supervised
learning of adaptive fuzzy systems propagates er-
rors through a small part of the system’s internal
connections, selected by the KM algorithm. This
results in a chaotic and inaccurate learning curve.
The reason for this is that the non-differentiable
maximum and minimum functions are used in the
selection process with the KM algorithm. There-
fore, we need continuous derivative functions that
approximate the maximum and minimum with suf-
ficient precision. In mathematical analysis, there

is a class of functions differentiable everywhere
known as smooth function. Such approximation
of the maximum function, called a smooth maxi-
mum function, is used in this article to construct
a novel type-reduction method for type-2 interval
fuzzy logic. Properties of the smooth maximum
function are useful for optimization of interval type-
2 fuzzy systems with such techniques as gradient
descent [2], conjugate gradient [3], or second-order
gradient [1], smoothly optimizes the interval type-2
fuzzy logic system as new data is available. Con-
sequently, in this paper, we derive a new adaptive
structure of the interval type-2 fuzzy logic system
equipped with smooth type-reduction. We summa-
rize this paper as follows:

1. We propose the use of smooth maximum in a
new formulation of type-reduction for interval
type-2 fuzzy sets.

2. We design a new structure of an adaptive interval
type-2 fuzzy logic system with multiple layers
corresponding to a new type-reduction method.

3. We apply the backpropagation optimization
method that makes use of the smooth maximum
and smooth minimum functions.

4. We demonstrate that the proposed design outper-
forms the standard type-2 fuzzy logic systems
using exact calculations of the KM algorithm.

2 An overview of interval type-2
fuzzy logic systems

A typical type-2 fuzzy system contains rules of
the following form:

R̃k : IF x is Ãk THEN y is B̃k. (1)

In this case, fuzzy rules are composed of type-2
fuzzy sets that operate under the most common rea-
soning schema. Input to the system is the fact that
x is Ã′. This premise is confronted with all rules
having antecedents Ãk and consequents B̃k. Finally,
a conclusion B̃′ is determined as an aggregation of
type-2 fuzzy consequents of active rules. In the in-
terval case, memberships are subintervals of [0,1]
expressed by of upper and lower bounds, e.g. Ãk =
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Ã′ (x) ,R

(
µ

Ãk
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The composition formula can be significantly sim-
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In most engineering cases, conjunctions in the form
of t-norms are employed as relations. In conse-
quence, the conclusion should be aggregated by
B̃′ =

∪R
k=1 B̃′

k. Consequently,
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However, R can be realized by material fuzzy im-
plications, as well, and thus aggregated as B̃′ =∩R

k=1 B̃′
k. Nevertheless, this logical approach is not

a case for this paper.

Type-reduction results in a type-1 fuzzy set,
called a type-reduced set. Obviously, an inter-
val type-2 fuzzy set after such reduction is char-
acterized by a normal and rectangular member-
ship function. Naturally, the next step needs a fi-
nal defuzzification of the traditional type, which

for the rectangle, requires only a trivial calcu-
lation of the average of the two bounds of the
type-reduced set. This all together leads to an
interval fuzzy structure presented in Figure 1.

Figure 1. Interval type-2 fuzzy logic system

2.1 Type-reduction for interval type-2 sets

Formally, type-reduction is an application of an
extension principle to the centroid defuzzification,
or to its discrete form called a height defuzzifica-
tion (in the case of singleton consequents). Let K
denotes the number of consequents for the extended
height defuzzification. Consequently, the centroid
of an interval type-2 fuzzy set, given by its lower
and upper memberships, µ

k
and µk, can be fuzzified

via the extension principle, i.e.,

µ(y) =




1 if y = ∑K
k=1 ykuk

∑K
k=1 uk

∣∣∣
uk∈[µk,µk]

0 otherwise
, (8)

where k = 1, . . . ,K.

To perform the optimization, assume that dis-
crete points of the interval type-2 set to be defuzzi-
fied are arranged in the following order y1 < y2 <
.. . ,yK . In this case, the extended centroid is a nor-
mal and rectangular fuzzy set bounded in a classical
interval, i.e. [ymin,ymax]. Generally, the bounds for
this set can be expressed by

ymin =
∑L−1

k=1 µkyk +∑K
k=L µ

k
yk

∑L−1
k=1 µk +∑K

k=L µ
k

, (9)

ymax =
∑R

k=1 µ
k
yk +∑K

k=R+1 µkyk

∑R
k=1 µ

k
+∑K

k=R+1 µk
, (10)

where L and R may be determined by the KM it-
erative procedure or other methods as e.g. smooth
type-reduction. The calculation of L and R is a ma-
jor computational problem for interval type-2 fuzzy
logic systems.

The final defuzzification can be calculated for-
mally by
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2.2 KM type-reduction

While calculating the centroid given by (8),
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Since the necessary condition leads us to the equa-
tion that does not depend on uq, inequality yq >
y(u1, . . . ,uk) implies that y is increasing with uq and
yq < y(u1, . . . ,uk) implies that y is decreasing with
uq.
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for all q = 1, . . . ,K.

Therefore, the KM type-reduction algorithm in
its simplest form can be summarized as follows.

Algorithm 1. Let the consequent values be aranged
in the ascending order y1 < y2 < .. . < yK. and let
us perform the following enumerations:

1. calculate type-1 system output y0 as an aver-
age of yk weighted by mean membership grades,
i.e.,

(
µ

k
+µk

)
/2,

2. set the initial values ymin = ymax = y0,

3. for each k = 1,2, . . . ,K, if yk > ymax, then
−→µ k = µk, otherwise −→µ k = µ

k
,

4. find the closest ynext = min
k=1,...,K

yk : yk > ymax,

5. calculate ymax as an average of yk weighted by
new grades −→µ k,

6. if ymax ≤ ynext, continue, else go to step 3,

7. for each k = 1,2, . . . ,K, if yk < ymin, then
µ
←−k = µk, otherwise µ

←−k = µ
k
,

8. find the closest ynext = max
k=1,...,K

yk : yk < ymin,

9. calculate ymin as an average of yk weighted by
new grades µ

←−k,

10. if ymin ≥ ynext, finish, else go to step 7.

Figure 2. Adaptive interval type-2 fuzzy logic
system using KM type-reduction

The direct application of Algorithm 1 leads to
the structure of the adaptive interval type-2 fuzzy
logic system, shown in Figure 2, which contains re-
cursions between layers 4 and 3. This feature com-
plicates the application of gradient descent tech-
niques since the output errors are propagated back-
ward only by the nodes selected with the ymax
and ymin functions. Consequently, for each of the
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rules, either the parameters of the upper member-
ship functions or of the lower membership func-
tions are learned. This makes the learning process
chaotic in time and poorly convergent. Thus, a nat-
ural remedy for this will be to use aggregate func-
tions that depend on all the arguments, rather than
functions depending on just the extreme argument,
such as min and max. Therefore, we use the smooth
maximum and smooth minimum functions to create
a new type-reduction algorithm.

3 Smooth type-reduction

Suppose each embedded system has an output
value υp, for p = 1, . . . ,P. A smooth maximum of
υ1, . . . ,υP is a differentiable approximation to the
maximum function with continuous derivatives. A
universal smooth maximum/minimum function is
formulated as

yα (υ1, . . . ,υP) =
∑P

p=1 υpeαυp

∑P
p=1 eαυp

(15)

which converges to maximum as parameter α tends
to positive infinity, or to minimum as α → −∞.
Note that y0 is the arithmetic mean of υ1, . . . ,υP.
Consequently, y−∞ and y∞ stand for the left ymin and
the right ymax end points of the type-reduced set, re-
spectively, while y0 is the output of the type-0 fuzzy
system embedded in the interval type-2 fuzzy sys-
tem. However, the number of output values can be
limited independently for ymin and ymax, since not
all tuples provide the optimal (maximal and mini-
mal) output values. For instance, in the search for
ymax, only tuples with lower memberships for con-
sequents not larger than y0 should be taken into ac-
count. Moreover, having yk arranged in ascending
order, we initialize the algorithm with a binary word
L....LU...U, where L and U stand for the lower and
the upper memberships, respectively. The mask is
implemented by a binary mask vector Mr, which
is exploited in step 3 of Algorithm 1. Now, only
right shifting operations can be performed to calcu-
late the next output values υp, which can maximize
the output. The operation has been inspired by a
type of digital circuit called the shift register. The
exemplary shifts in order to determine ymax are pre-
sented in Figure 3.

r \k 1 2 R R+1 K-1 K

R 0 0 1 1 1 1
R+1 0 0 0 1 1 1
K-1 0 0 0 0 1 1
K 0 0 0 0 0 1

Figure 3. Right shifted masks for a membership
selection between upper and lower memberships to

calculate ymax.

In the search for ymin, similar mask 1 . . .1 0 . . .0
initialize left shifting operations. Therefore, using
the smooth extremum function (15), the proposed
algorithm can be summarized as follows:

Algorithm 2. Let the consequent values be ar-
ranged in the ascending order y1 < y2 < .. . < yK

and the values in vector forms, i.e.,

y = [y1, . . . ,yK ]

µ = [µ1, . . . ,µK ]

µ =
[
µ

1
, . . . ,µ

K

]

To compute the right and the left endpoints of the
type-reduced set, perform the following steps:

1. calculate type-1 system output y0 as an aver-
age of elements of yweighted by mean member-
ship grades, i.e.,

(
µ+µ

)
/2,

2. find index R of the closest yR = min
k=1,...,K

yk : yk >

y0,

3. for r = R, . . . ,K − 1:

a) set a mask Mr = 0 . . .01 . . .1
1 ... R ... K

,

b) apply the mask to upper and lower member-
ships −→µ = (1−Mr)⊙ µ+Mr ⊙ µ (where ⊙
is the Hadamard product),

c) calculate −→y r as an average of elements y
weighted by −→µ ,

4. return ymax as an aggregation of all −→y r

with the use of smooth maximum (15),
r = R, . . . ,K − 1,

5. find index L of the closest yL = min
k=1,...,K

yk :

yk < y0,

6. for l = 2, . . . ,L:
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a) set a mask Ml = 1 . . .10 . . .0
1 ... L ... K

,

b) apply the mask to upper and lower member-
ships ←−µ = (1−Ml)⊙µ+Ml ⊙µ,

c) calculate ←−y l as an average of elements y
weighted by ←−µ ,

7. return ymin as an aggregation of all ←−y l with
the use of smooth minimum given by (15),
r = 2, . . . ,L.

From the machine learning point of view, a fun-
damental property of the smooth maximum func-
tion is the differentiability. The derivative of yα can
be easily calculated as:

∂yα (υ1, . . . ,υP)

∂υq
=

eαυq (1+αυq −αyα (υ1, . . . ,υP))

∑P
p=1 eαυp

(16)

Alternatively, smooth maximum can be de-
fined by LogSumExp function, LSE (υ1, . . . ,υP) =
1
α log∑p exp(αυp), or the p-norm, ∥(υ1, . . . ,υR)∥p =

(∑r |υr|p)
1
p . However, when applied to the gradient

machine learning, they give almost identical results.

4 A smooth interval type-2 fuzzy
logic system

Using shifted mask vectors
−→
M and

←−
M, the right

end-point and the left boundary of the type-reduced
set are calculated as
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where i and j indicate different shifted masks with
respoect to steps 3 and 6 of Algorithm 2. The pro-
posed structure of adaptive interval type-2 fuzzy
system using smooth type-reduction is presented
in Figure 4. Distinct masks for selection of up-
per/lower grades of rule firing result with several
sublayers 3i and 4 j. The sublayers are then aggre-

gated by the smooth max and the smooth min oper-
ations, i.e.,

ymax (
−→y 1, . . . ,
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Figure 4. Adaptive interval type-2 fuzzy logic
system using smooth type-reduction
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The gradient of smooth maximum (analogously
smooth minimum) is calculated using (16), i.e.,
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a) set a mask Ml = 1 . . .10 . . .0
1 ... L ... K

,

b) apply the mask to upper and lower member-
ships ←−µ = (1−Ml)⊙µ+Ml ⊙µ,

c) calculate ←−y l as an average of elements y
weighted by ←−µ ,

7. return ymin as an aggregation of all ←−y l with
the use of smooth minimum given by (15),
r = 2, . . . ,L.
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∂υq
=

eαυq (1+αυq −αyα (υ1, . . . ,υP))
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The gradient of smooth maximum (analogously
smooth minimum) is calculated using (16), i.e.,

∇−→y q
ymax (

−→y 1, . . . ,
−→y R) =

eα−→y q (1+α−→y q −αymax)

∑R
i=1 eα−→y i
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∇←−y q
ymin (
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The rest of the derivations of the gradient de-
scent algorithm relies on the composition of partial
derivatives to minimize the following square error
as the cost function

Q =
1
2
(
d − y′

)2 (27)

5 Experimental results

In this paper, the interval type-2 fuzzy logic
system with smooth type-reduction is compared
with the type-2 fuzzy system based on KM type-
reduction and the type-1 FLS. We demonstrate per-
formance on two regression datasets: Nonlinear
Dynamic Plant and Kinematics. As it is the first
demonstration of the smooth interval type-2 FLS,
we use the standard back propagation method with
first-order derivatives of the square error propagated
backward. The root mean square error measures
and compares the performance of simulated sys-
tems

RMSE =

√
∑P

p=1 Qp

P
(28)

which is calculated as a mean value over P patterns
in each fold of cross-validation, and then averaged
over all folds.

In all experiments, the errors were measured
as testing results using 10-folds cross-validation.
Whole datasets were used in 50 learning epochs,
after which the errors were stabilized and the test-
ing errors were still close to the training errors.
The learning hyperparameters of the systems were
tuned to achieve the best performance. Each hyper-
parmeter was estimated independently using cross-
validation. The final set of hyperparameters was
chosen as: ηy = 0.1, ησ = ηm = ηθ = 0.05, and the
optimal smoothness parameter was either α = 100
in the case of smooth maximum or α = −100 in
the case of smooth minimum. The choice of the al-
pha parameter was a compromise between the accu-
racy of the approximation of the maximum function
and the value of the derivative of this function with
respect to submaximal input variables. It is worth
noting that the derivative of the smooth maximum
function with respect to υq given by (16), however,
related to the known soft-max function, is depen-
dent on the α times difference between the func-
tion’s output and υq.

The Nonlinear Dynamic Plant is an original
dataset studied by Wang [20]. It consists of 400
samples generated by the second-order difference
equation:

y(t) = g(y(t −1) ,y(t −2))+u(t) , (29)

where

g(y(t −1) ,y(t −2)) =

y(t −1)y(t −2)
(
y(t −1)− 1

2

)
1+ y2 (t −1)+ y2 (t −2)

(30)

Starting from the equilibrium state (0,0), 200 sam-
ples were obtained for a random input u uniformly
distributed in [−1.5,1.5], and the latter samples
were collected with a sinusoidal input signal given,
i.e., u(t) = sin(2πt/25).

The result of comparing systems with 6 rules for
the original data and with the noise of individual in-
puts is presented in Table 1. In order to test the
systems’ performance under conditions of greater
uncertainty of data, we added random values from
the uniform distribution to the input variables. A
parameter ∆i corresponds to the width of the prob-
ability distribution in relation to the width of the
domain of the input variable. The noise applied to
all inputs was intended to test the benefits of using
Type-2 systems with all rules being uniformly un-
certain.

Table 1. Nonlinear Dynamic Plant approximation
with optional uniform disturbance applied to inputs
(T1 stands for the type-1 FLS, KM-IT2 for interval
type-2 FLS, and S-IT2 for smooth interval type-2

FLS)

T1 KM-IT2 S-IT2
RMSE RMSE RMSE

original dataset
0.1066 0.1060 0.0943

∆1 noised 1st input
0.1 0.1460 0.1249 0.1095
0.5 0.2534 0.2427 0.2407
∆2 noised 2nd input
0.1 0.1514 0.1355 0.1308
0.5 0.2641 0.2305 0.2131
∆1,2 noised all inputs
0.1 0.2380 0.2065 0.1858
0.5 0.2907 0.2741 0.2721
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It can be observed that smooth type-reduction de-
creases the RMSE in all cases. The difference be-
tween the performance of the type-1 FLS, the stan-
dard interval type-2 fuzzy system, and the proposed
smooth interval type-2 FLS is especially noticeable
for the original data, however, with noisy data, the
smooth system still performs better.

The Kinematics data set is taken from the
Data for Evaluating Learning in Valid Experiments
(DELVE) repository of the University of Toronto,
and is concerned with the forward kinematics of
an 8 link all-revolute robot arm. The desired out-
put presents predictions of the distance between the
end-effector and a target. We have selected the 8nm
data variant with 8192 instances, which is highly
non-linear and medium noisy.

The simulation results of training systems with
13 fuzzy rules (type-1 and type-2) are summarized
in Table 2. The obtained RMSE confirm that the
smooth type-reduction increases the accuracy of re-
gression.

Table 2. Kinematics predictions with optional
uniform disturbance applied to all inputs (T1

stands for the type-1 FLS, KM-IT2 for interval
type-2 FLS, and S-IT2 for smooth interval type-2

FLS)

IT1 KM-IT2 S-IT2
RMSE RMSE RMSE

original dataset
0.1947 0.1903 0.1911

∆n noised all inputs
0.1 0.2447 0.2583 0.2379
0.5 0.3532 0.3497 0.3368

6 Conclusions

In this paper, we demonstrated that there is a
differentiable type-reduction method, which serves
up better training in adaptive interval type-2 fuzzy
logic systems. Compared to the type-2 interval sys-
tem based on KM type-reduction, the system based
on smooth type-reduction shows non-chaotic learn-
ing processes and achieves much lower training and
testing error values. Both type-2 fuzzy systems sig-
nificantly exceed the learning ability of the type-1
fuzzy system.

The proposed system is a good approach to
solving problems with increased model uncertainty
or with uncertain measurements of the input data.
In cases where we have even a small portion of
undistorted training data, we perform the initial
training of type-2 systems by treating them as type-
1 fuzzy systems, and then we use the method of
generating type-2 fuzzy rules for uncertain data us-
ing the fuzzy-rough approximation [12, 18, 17] or
possibilistic fuzzification [16, 13]. So we reaffirm
that type-2 fuzzy systems are key to extracting ex-
planatory fuzzy rules, especially in the case of un-
certainty or even ambivalency of these rules.

In the case of many rules, the structure of the
fuzzy system with smooth type-reduction has many
layers to be aggregated by the smooth maximum
or smooth minimum functions, hence some simi-
larities to deep neural networks are not unintended.
The model complexity reduction methods, devel-
oped e.g. for convolutional neural networks, will
be adapted to fuzzy type-2 smooth systems in our
future work.
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[3] Bilski, J. and Smoląg, J. (2020). Fast conju-
gate gradient algorithm for feedforward neural net-
works. In Rutkowski, L., Scherer, R., Korytkowski,
M., Pedrycz, W., Tadeusiewicz, R., and Zurada,
J. M., editors, Artificial Intelligence and Soft Com-
puting, pages 27–38, Cham. Springer International
Publishing.

A NOVEL APPROACH TO TYPE-REDUCTION AND DESIGN OF . . .

[4] Chen, Y. and Wang, D. (2018). Study on centroid
type-reduction of general type-2 fuzzy logic sys-
tems with weighted enhanced Karnik–Mendel al-
gorithms. Soft Computing, 22(4):1361–1380.

[5] De Magistris, G., Russo, S., Roma, P., Starczewski,
J. T., and Napoli, C. (2022). An explainable fake
news detector based on named entity recognition
and stance classification applied to covid-19. In-
formation, 13(3):137.

[6] El-Nagar, A. M. and El-Bardini, M. (2014). Sim-
plified interval type-2 fuzzy logic system based on
new type-reduction. Journal of Intelligent & Fuzzy
Systems, 27(4):1999–2010.

[7] Karnik, N. N., Mendel, J. M., and Liang, Q. (1999).
Type-2 fuzzy logic systems. IEEE Transactions on
Fuzzy Systems, 7(6):643–658.

[8] Liang, Q. and Mendel, J. M. (2000). Interval type-
2 fuzzy logic systems: Theory and design. IEEE
Transactions on Fuzzy Systems, 8:535–550.

[9] Maowen Nie and Woei Wan Tan (2008). To-
wards an efficient type-reduction method for in-
terval type-2 fuzzy logic systems. In 2008 IEEE
International Conference on Fuzzy Systems (IEEE
World Congress on Computational Intelligence),
pages 1425–1432.

[10] Melgarejo, M. (2007). A fast recursive method
to compute the generalized centroid of an interval
type-2 fuzzy set. In Proc. NAFIPS 2007, pages
190–194.

[11] Mendel, J. M. (2017). Uncertain rule-based fuzzy
systems. Introduction and new directions, page
684.

[12] Nowicki, R. K. and Starczewski, J. T. (2017). A
new method for classification of imprecise data us-
ing fuzzy rough fuzzification. Inf. Sci., 414:33–52.

[13] Nowicki, R. K., Starczewski, J. T., and Grycuk,
R. (2019). Extended possibilistic fuzzification for
classification. In Guervós, J. J. M., Garibaldi, J.,
Linares-Barranco, A., Madani, K., and Warwick,
K., editors, Proceedings of the 11th International
Joint Conference on Computational Intelligence,
IJCCI 2019, Vienna, Austria, September 17-19,
2019, pages 343–350. ScitePress.

[14] Rojas, J. D., Salazar, O., and Serrano, H. (2016).
Nie-Tan Method and its Improved Version: A
Counterexample. IngenierÃa, 21:138 – 153.

[15] Sepulveda, R., Castillo, O., Melin, P., and Mon-
tiel, O. (2007). An efficient computational method
to implement type-2 fuzzy logic in control applica-
tions. In Melin, P. and et al., editors, Analysis and
Design of Intelligent Systems using Soft Comput-
ing Techniques, volume 41, chapter 5, pages 45–
52. Springer-Verlag, Germany, 1 edition.

[16] Starczewski, J. T. (2013). Advanced Concepts in
Fuzzy Logic and Systems with Membership Un-
certainty, volume 284 of Studies in Fuzziness and
Soft Computing. Springer.

[17] Starczewski, J. T., Goetzen, P., and Napoli, C.
(2020). Triangular fuzzy-rough set based fuzzifi-
cation of fuzzy rule-based systems. Journal of Ar-
tificial Intelligence and Soft Computing Research,
10.

[18] Starczewski, J. T., Nowicki, R. K., and Nieszporek,
K. (2019). Fuzzy-rough fuzzification in general
FL classifiers. In Guervós, J. J. M., Garibaldi,
J., Linares-Barranco, A., Madani, K., and War-
wick, K., editors, Proceedings of the 11th Inter-
national Joint Conference on Computational Intel-
ligence, IJCCI 2019, Vienna, Austria, September
17-19, 2019, pages 335–342. ScitePress.

[19] Staszewski, P., Jaworski, M., Rutkowski, L., and
Tao, D. (2020). Explainable cluster-based rules
generation for image retrieval and classification.
In Rutkowski, L., Scherer, R., Korytkowski, M.,
Pedrycz, W., Tadeusiewicz, R., and Zurada, J. M.,
editors, Artificial Intelligence and Soft Computing,
pages 85–94, Cham. Springer International Pub-
lishing.

[20] Wang, L. and Yen, J. (1999). Extracting fuzzy rules
for system modeling using a hybrid of genetic algo-
rithms and kalman filter. Fuzzy Sets and Systems,
101:353–362.

[21] Wu, D. and Mendel, J. M. (2009). Enhanced
karnik-mendel algorithms. IEEE Transactions on
Fuzzy Systems, 17(4):923–934.

[22] Wu, D. and Tan, W. (2005). Computationally ef-
ficient type-reduction strategies for a type-2 fuzzy
logic controller. In Proc. IEEE Fuzzy Conference,
pages 353–358, Reno, NV.

[23] Zadeh, L. A. (1975). The concept of a linguistic
variable and its application to approximate reason-
ing — I. Information Sciences, 8:199–249.



206

Janusz T. Starczewski is an Asso-
ciate Professor with the Department 
of Intelligent Computer Systems at 
Czestochowa University of Technolo-
gy, where he is Head  of education for 
discipline of information and commu-
nication technology. He holds the Ph.D 
and D.Sc. degrees in Computer Scien-
ce and an M.Sc. in Electrical Engine-

ering. He is an experienced project contributor in artificial 
intelligence and IT systems. The mainstream of his scientific 
achievements comprise studies on advanced concepts of fuz-
zy logic, including type-2 fuzzy logic systems and their com-
binations with the rough set theory. He has authored more 
than 50 publications. His book ”Advanced Concepts in Fuzzy 
Logic and Systems with Membership Uncertainty” has been 
granted by the Polish Minister of Science and Higher Edu-
cation.

Krzysztof Przybyszewski is a profes-
sor at the University of Social Sciences 
in Łódź. His adventure with applied 
computer science began in the 1980s 
with a simulation of non-quantum col-
lective processes (the subject of a Ph.D. 
dissertation). At present, he is involved 
in research and applications of various 
artificial intelligence technologies and 

soft computing methods in selected IT problems (in particu-
lar, in expert systems supporting the management of educa-
tion quality in universities - the use of fuzzy numbers and 
sets). As a deputy dean at the University of Social Sciences, 
he is the designer and organizer of the on-Computer Science 
Faculty education program. He is the author of over 80 pub-
lications in the field of computer science and IT applications.

Aleksander Byrski obtained Ph.D. 
in 2007 and D.Sc. in 2013 at the De-
partment of Computer Science of the 
AGH University of Science and Tech-
nology in Krakow, Poland. His main 
research interests are metaheuristics, 
agentbased systems, high performance 
computing and simulation. He works 
as  a  Full  Professor in the Institute 

of Computer Science at the AGH University of Science and 
Technology.

Eulalia Szmidt is a Full Professor 
of Computer Science at the Systems 
Research Institute Polish Academy of 
Sciences, and WIT - Warsaw School of 
Information Technology, in Warsaw, 
Poland. She has a M.Sc and Ph.D. in 
automatic control and computer sci-
ence from the Warsaw University of 
Technology, MBA in management and 

marketing from the University of Illinois at Urbana-Cham-
paign, and D.Sc. in artificial intelligence from the Bulgarian 
Academy of Sciences. 

Her main interests concern representation and processing 
of imprecise information, fuzzy sets, intuitionistic fuzzy sets, 
artificial intelligence, soft computing. She is a co-editor of 
many volumes, and an (co)author of 200 papers published in 
the international journals, edited volumes and proceedings of 
prestigious national and international conferences. She has 
been a member of many program committees at national and 
international congresses, conferences and workshops, local 
co-chair of 19 scientific meetings, and a reviewer for many 
international journals. She is an IFSA Fellow and a member 
of the EUSFLAT Board.

Christian Napoli is Associate Profes-
sor with the Department of Computer, 
Control, and Management Engineer-
ing “Antonio Ruberti”, Sapienza Uni-
versity of Rome, since 2019, where he 
also collaborates with the department 
of Physics and the Faculty of Medicine 
and Psychology, as well as holding 
the office of Scientific Director of the 

International School of Advanced and Applied Computing 
(ISAAC). 

He received the B.Sc. degree in Physics from the Depart-
ment of Physics and Astronomy, University of Catania, in 
2010, where he also got the M.Sc. degree in Astrophysics in 
2012 and the Ph.D. in Computer Science in 2016 at the De-
partment of Mathematics and Computer Science, he obtained 
the National Scientific Abilitation as associate professor in 
Computer Engineering (2017) and computer science (2019).

Christian Napoli has been Research Associate with the De-
partment of Mathematics and Computer Science, University 
of Catania, from 2018 to 2019, while, previously, Research 
Fellow and Adjunct Professor with the same department from 
2015 to 2018. He has been a Student Research Fellow with 
the Department of Electrical, Electronics, and Informatics 
Engineering, University of Catania, from 2009 to 2016, a col-
laborator of the Astrophysical Observatory of Catania and the 
National Institute for Nuclear Physics, since 2010. 

He has been several time Invited Professor at the Silesian 
University of Technology, Visiting Academic at the New 
York University, and responsible of many different institu-
tional topics from 2011 until now for Undegraduate, Gradu-
ate and PhD students in Computer Science, Computer Engi-
neering and Electronics Engineering. His teaching activity 
focused on Artificial Intelligence, Neural Networks, Machine 
Learning, Computing Systems, Computer Architectures, 
Distributed Systems, and High Performance Computing. He 
is involved in several international research projects, serves 
as reviewer and member of the board program committee for 
major international journals and international conferences. 
His current research interests include neural networks, arti-
ficial intelligence, human-computer interation and computa-
tional neuropsychology. 

Janusz T. Starczewski, Krzysztof Przybyszewski, Aleksander Byrski, Eulalia Szmidt, Christian Napoli


