PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modified Burzynski criterion along with AFR and non-AFR for asymmetric anisotropic materials

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Burzynski criterion is a well-known criterion is employed for pressure-sensitive isotropic materials. In the current study, this criterion is modified for asymmetric anisotropic materials called hear MB. Firstly, a modified deviatoric stress tensor is defined with a linear transformation to consider the anisotropy effects of materials. Secondly, MB is presented by the sum of n-components to have more capability to be calibrated with different numbers of experimental tests and thirdly, the non-linear impact of hydrostatic pressure is ignored due to the previous experiments. In this research, when associated flow rule (AFR) and non-associated flow rule (non-AFR) are employed to calibrate MB, it is called MB-1 and MB-2, respectively. Yielding of different alloys such as AA 2008-T4 and AA 2090-T3 with Face-Centered Cubic (FCC) structure and also AZ31 B, ZK61 M, high purity α-titanium, texture magnesium, Mg-0.5% Th alloy, Mg-4% Li alloy and Ti-4 Al-1/4 O2 titanium alloy with Hexagonal Close-Packed (HCP) structure are studied to show the accuracy of MB-1 and MB-2. It is shown that the presented approach is very effective especially by using MB-2.
Rocznik
Strony
392--409
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, Eqbal Lahoori Institute of Higher Education, Mashhad, Iran
  • Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
Bibliografia
  • [1] Spitzig WA, Sober RJ, Richmond O. Pressure dependence of yielding and associated volume expansion in tempered martensite. ActaMetall. 1975;23:885–93.
  • [2] Spitzig WA, Richmond O. The effect of pressure on the flow stress of metals. ActaMetall. 1984;32:457–63.
  • [3] Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Lege DJ, Pourboghrat F, Choi SH, Chu E. Plane stress yield function for aluminum alloy sheets-part 1: theory. Int J Plast. 2003;19:1297–319.
  • [4] Stoughton TB, Yoon JW. A pressure-sensitive yield criterion under a non-associated flow rule for sheet metal forming. Int J Plast. 2004;20:705–31.
  • [5] Hu W. An orthotropic criterion in a 3-D general stress state. Int J Plast. 2005;21:1771–96.
  • [6] Pecherski RB. Burzynski yield criterion vis-a-vis the related studies reported in the literature. Eng Trans. 2008;56(4):383–91.
  • [7] Hu W, Wang ZR. Construction of a constitutive model in calculations of pressure-dependent material. Comput Mater Sci. 2009;46:893–901.
  • [8] Stoughton TB, Yoon JW. Anisotropic hardening and non-associated flow in proportional loading of sheet metals. Int J Plast. 2009;25:1777–817.
  • [9] Nixon ME, Cazacu O, Lebensohn RA. Anisotropic response of high-purity -titanium: experimental characterization and constitutive modeling. Int J Plast. 2010;26:516–32.
  • [10] Fras T, Kowalewski Z, Pecherski RB, Rusinek A. Applications of Burzynski failure criteria – I. Isotropic materials with asymmetry of elastic range. Eng Trans. 2010;58(1–2):1–10.
  • [11] Fras T, Pecherski RB. Applications of the Burzynski hypothesis of material effort for isotropic solids. Mech Control. 2010;29(2):45–50.
  • [12] Vadillo G, Fernandez-Saez J, Pecherski RB. Some applications of Burzynski yield condition in metal plasticity. Mater Des. 2011;32:628–35.
  • [13] Nowak M, Ostrowska-Maciejewska J, Pecherski RB, Szeptynski P. Yield criterion accounting for the third invariant of stress tensor deviator. Part I. Proposition of the yield criterion based on the concept of influence functions. Eng Trans. 2011;59(4):273–81.
  • [14] Pecherski RB, Szeptynski P, Nowak M. An extension of Burzynski hypothesis of material effort accounting for the third invariant of stress tensor. Arch Metall Mater. 2011;56(2):503–8.
  • [15] Szeptynski P. Some remarks on Burzynski failure criterion for anisotropic materials. Eng Trans. 2011;59(2):119–36.
  • [16] Ostrowska- Maciejewska J, Pecherski RB, Szeptynski P. Limit condition for anisotropic materials with asymmetric elastic range. Eng Trans. 2012;60(2):125–38.
  • [17] Andar MO, Kuwabara T, Steglich D. Material modeling of AZ31 Mg sheet considering variation of r-values and asymmetry of the yield locus. Mater SciEng A. 2012;549:82–92.
  • [18] Lou Y, Huh H, Yoon JW. Consideration of strength differential effect in sheet metals with symmetric yield functions. Int J Mech Sci. 2013;66:214–23.
  • [19] Yoon JW, Lou Y, Yoon J, Glazoff MV. Asymmetric yield function based on the stress invariants for pressure sensitive metals. Int J Plast. 2014;56:184–202.
  • [20] Moayyedian F, Kadkhodayan M. Combination of modified Yld 2000–2d and Yld2000-2d in anisotropic pressure dependent sheet metals. Latin Am J Solids Struct. 2015;12:92–114.
  • [21] Moayyedian F, Kadkhodayan M. Modified Burzynski criterion with non-associated flow rule for anisotropic asymmetric metals in plane stress problems. Appl Math Mech (English Edition). 2015;36:303–18.
  • [22] Kolupaev VA, Yu MH, Altenbach H. Fitting of the strength hypotheses. Acta Mech. 2016;227:1533–56.
  • [23] Moayyedian F, Kadkhodayan M. An advanced criterion based on non-AFR for anisotropic sheet metals. Struct Eng Mech. 2016;57:1015–38.
  • [24] Moayyedian F, Kadkhodayan M. A modified Burzynski criterion for anisotropic pressure-dependent materials. Sadhana. 2017;42:95–109.
  • [25] Lou Y, Yoon JW. Anisotropic ductile fracture criterion based on linear transformation. Int J Plast. 2017;93:3–25.
  • [26] Moayyedian F, Kadkhodayan M. Non-linear influence of hydrostatic pressure on yielding of asymmetric anisotropic sheet metals. Math Mech Solids. 2018;23:159–80.
  • [27] Suzuki T, Okamura K, Capilla G, Hamasaki H, Yoshida F. Effect of anisotropy evolution on circular and oval hole expansion behavior of high-strength steel sheets. Int J Mech Sci. 2018;146–147:556–70.
  • [28] Lou Y, Yoon JW. Anisotropic yield function based on stress invariants for BCC and FCC metals and its extension to ductile fracture criterion. Int J Plast. 2018;101:125–55.
  • [29] Mucha M, Wcisło B, Pamin J, Kowalczyk-Gajewska K. Instabilities in membrane tension: parametric study for large strain thermoplasticity. Arch Civil MechEng. 2018;18:1055–67.
  • [30] Chandola N, Cazacu O, Revil-Baudard B. Prediction of plastic anisotropy of textured polycrystalline sheets using a new single-crystal model. CR Mec. 2018;346:756–69.
  • [31] Lou Y, Zhang S, Yoon JW. A reduced Yld 2004 function for modeling of anisotropic plastic deformation of metals under triaxial loading. Int J Mech Sci. 2019;161–162:105027.
  • [32] Lia Zh, Yang H, Liu J. Comparative study on yield behavior and non-associated yield criteria of AZ31B and ZK61 M magnesium alloys. Mater SciEng A. 2019;759:329–45.
  • [33] Lou Y, Yoon JW. Alternative approach to model ductile fracture by incorporating anisotropic yield function. Int J Solids Struct. 2019;164:12–24.
  • [34] Wosatko A, Winnicki A, Polak MA, Pamin J. Role of dilatancy angle in plasticity-based models of concrete. Arch Civil MechEng. 2019;19:1–16.
  • [35] Banaszkiewicz M, Dudda W, Badur J. The effect of strength differential on material effort and lifetime of steam turbine rotors under thermo-mechanical load. Eng Trans. 2019;67(2):167–84.
  • [36] Wu B, Wang H, Taylor T, Yanagimoto J. A non-associated constitutive model considering anisotropic hardening for orthotropic anisotropic materials in sheet metal forming. Int J Mech Sci. 2019;169:105320.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9aefd39a-248e-4eb6-ba93-84088df77c86
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.