PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Role of slip velocity in a magneto-micropolar fluid flow from a radiative surface with variable permeability: a numerical study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An analysis is presented to describe the hydromagnetic mixed convection flow of an electrically conducting micropolar fluid past a vertical plate through a porous medium with radiation and slip flow regime. A uniform magnetic field has been considered in the study which absorbs the micropolar fluid with a varying suction velocity and acts perpendicular to the porous surface of the above plate. The governing non-linear partial differential equations have been transformed into linear partial differential equations, which are solved numerically by applying the explicit finite difference method. The numerical results are presented graphically in the form of velocity, micro-rotation, concentration and temperature profiles, the skin-friction coefficient, the couple stress coefficient, the rate of heat and mass transfers at the wall for different material parameters.
Rocznik
Strony
637--651
Opis fizyczny
Bibliogr. 37 poz., wykr.
Twórcy
autor
  • Department of Mathematics Birla Institute of Technology and Science Pilani, Rajasthan, INDIA
autor
  • Department of Mathematics University of Rajasthan, Jaipur, Rajasthan, INDIA
autor
  • Department of Mathematics University of Rajasthan, Jaipur, Rajasthan, INDIA
Bibliografia
  • [1] Eringen A.C. (1964): Simple microfluids. Int. J. Engng. Sci., vol.2, pp.205-217.
  • [2] Eringen A.C. (1972): Theory of Termomicrofluids. J. Math. Anal. Appl., vol.38, pp.480-496.
  • [3] Gorla R.S.R. (1992): Mixed convection in a micropolar fluid from a vertical surface with uniform heat flux. Int. J. Engng. Sci., vol.30, pp.349-358.
  • [4] Rees D.A.S. and Pop I. (1998): Free convection boundary layer flow of a micropolar fluid from a vertical flat plate. IMAJ. Appl. Math., vol.61, pp.179-197.
  • [5] Takhar H.S. and Soundalgekar V.M. (1980): Heat transfer in a flat plate flow of a micropolar fluid Rheologica Acta, vol.19, pp.525–526.
  • [6] Takhar H.S. and Soundalgekar V.M. (1985): Flow and heat transfer of micropolar fluid past a porous plate. Indian J. Pure Appl. Math., vol.16, pp.552–558.
  • [7] Gorla R.S.R., Slaouti A.S. and Takhar H.S. (1998): Free convection in micropolar fluids over a uniformly heated vertical plate. Int. J. Heat and Fluid Flow, vol.8, pp.504–518.
  • [8] Gorla R.S.R., Mohammedan A., Mansour M. and Hussein I. (1995): Unsteady natural convection from a heated vertical plate in micropolar fluid. Numerical Heat Transfer, Part A, vol.28, pp.253–262.
  • [9] Sharma K., Chaudhary R.C. and Sharma P.K. (2007): Fluctuating mass transfer on three-dimensional flow through a porous medium with variable permeability. Advances in Theoretical and Applied Mathematics, vol.2, No.3, pp.257-267.
  • [10] Raptis A. and Takhar H.S. (1999): Polar fluid through a porous medium. Acta Mechanica, vol.135, pp.91–93.
  • [11] Helmy K.A. (1998): MHD unsteady free convection flow past a vertical porous plate. ZAMM, vol.98, pp.255-270.
  • [12] Sharma K. and Chaudhary R.C. (2008): Hydromagnetic unsteady mixed convection and mass transfer flow past a vertical porous plate immersed in a porous medium with Hall effect. Engineering Transactions, vol.56, No.1, pp.3-23.
  • [13] Chaudhary R.C. and Sharma B.K. (2006): Combined heat and mass transfer by laminar mixed convection flow from a vertical surface with induced magnetic field. Journal of Applied Physics, vol.99, pp.34901-10.
  • [14] El-Hakiem M.A., Mohammadein A.A., El-Kabeir S.M.M. and Gorla R.S.R. (1999): Joule heating effects on magnetohydrodynamic free convection flow of a micropolar fluid. Int. Comm. Heat Mass Tran., vol.26, No.2, pp.219-227.
  • [15] El-Amin M.F. (2001): Magnetohydrodynamic free convection and mass transfer flow in micropolar fluid with constant suction. J. Magn. Mater., vol.234, pp.567-574.
  • [16] Kim Y.J. (2001): Unsteady convection flow of micropolar fluids past a vertical plate embedded in a porous medium. Acta. Mech., vol.148, pp.105-116.
  • [17] Kim Y.J. (2004): Heat and mass transfer in MHD micropolar flow over a vertical moving plate in a porous medium. Trans. Porous Media, vol.56, pp.17-37.
  • [18] Kim Y.J. and Lee J.C. (2003): Analytical studies on MHD oscillatory flow of a micropolar fluid over a vertical porous plate. Surface and Coatings Technology, vol.171, pp.187–193.
  • [19] Sharma K., Mishra A. and Gupta S. (2013): Heat and mass transfer in magneto-biofluid flow through a non-Darcian porous medium with Joule effect. J. Eng. Phys. and Thermo Phys., vol.86, No.4, pp.716-725.
  • [20] Das U.N., Deka R.K. and Soundalgekar V.M. (1994): Effects of mass transfer on flow past an impulsively started infinite vertical plate with constant heat flux and chemical reaction Forschung im Engenieurwesen Engineering Research Co., pp.284-287.
  • [21] Sharma B.K., Singh A.P., Yadav K. and Chaudhary R.C. (2013): Effects of chemical reaction on magnetomicropolar fluid flow from a radiative surface with variable permeability. International Journal of Applied Mechanics and Engineering, vol.18, No.3, pp.833-85.
  • [22] Sharma B.K., Yadav K., Mishra N.K. and Chaudhary R.C. (2012): Soret and Dufour effects on unsteady MHD mixed convection flow past a radiative vertical porous plate embedded in a porous medium with chemical reaction. Applied Mathematics, vol.3, No.7, pp.717-723. doi:10.4236/am.2012.37105.
  • [23] Muthucumarswamy R. and Ganesan P. (2001): First order chemical reaction on flow past an impulsively started vertical plate with uniform heat and mass flux. Acta. Mech., vol.147, pp.45-57.
  • [24] Sharma B.K., Jha A.K. and Chaudhary R.C. (2006): Radiation effect with simultaneous thermal and mass diffusion in MHD mixed convection flow from a vertical surface with Ohmic heating. Romania Journal of Physics, vol.51, No.7-8, pp.715-727.
  • [25] Sharma B.K., Agarwal M. and Chaudhary R.C. (2006): MHD fluctuating free convective flow with radiation embedded in porous medium having variable permeability and heat source/sink. Journal of Technical Physics, vol.47, No.1, pp.47-58.
  • [26] Perdikis C. and Raptis A. (1996): Heat transfer of a micropolar fluid by the presence of radiation. Heat and Mass Transfer, vol.31, No.6, pp.381–382.
  • [27] Elbashbeshy E.M.A. and Bazid M.A.A. (2000): Effect of radiation on forced convection flow of a micropolar fluid over a horizontal plate. – Can. J. Phys./Rev. Can. Phys., vol.78, No.10, pp.907–913.
  • [28] Ibrahim F.S., Hassanien I.A. and Bakr A.A. (2004): Unsteady magneto-hydrodynamic micropolar fluid flow and heat transfer over a vertical porous plate through a porous medium in the presence of thermal and mass diffusion with a constant heat source. – Can. J. Phys./Rev. Can. Phys., vol.82, No.10, pp.775–790.
  • [29] Sharma B.K., Chaudhary R.C. and Agarwal M. (2007): Radiation effect on temperature distribution in threedimensional Couette flow with injection or suction. – Applied Mathematics and Mechanics, vol.28, No.3, pp.309-316.
  • [30] Sharma B.K., Chaudhary R.C. and Agarwal M. (2008): Radiation effect on steady free convective flow along a uniform moving porous vertical plate in presence of heat source/sink and transverse magnetic field. – Bull. Cal. Math. Soc., vol.100, pp.529-538.
  • [31] Yoshimura A. and Prudhomme R.K. (1998): Wall slip corrections for Couette and parallel disc viscometers. – J. Rheol., vol.32, pp.53–67.
  • [32] Sharma P.K. and Sharma B.K. (2004): Influence of variable suction on unsteady free convective flow from a vertical flat plate and heat transfer in slip-flow regime. – Ganita Sandesh, vol.18, No.1, pp.55-62.
  • [33] Raptis A. and Massalas C.V. (1998): Magnetohydrodynamic flow past a plate by the presence of radiation. – Heat and Mass Transfer, vol.34, pp.107–109.
  • [34] Perdikis C. and Raptis E. (2006): Unsteady MHD flow in the presence of radiation. – Int. J. of Applied Mechanics and Engineering, vol.11, No.2, pp.383–390.
  • [35] Raptis A. and Perdikis C. (1998): Viscoelastic flow by the presence of radiation. – Z. Angew. Math. Mech., vol.78, No.4, pp.277–279.
  • [36] Rees D.A.S. and Bassom A.P. (1996): The Blasisum boundary layer flow of microppolar fluid. – Int. Engng. Sci., vol.34, pp.113-124.
  • [37] Hoffman J.D. (1992): Numerical Methods for Engineers and Scientists. – New York: McGraw-Hill. Received: July.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9aee4ffe-902f-4962-b7ee-f04d91a188db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.