Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluating the sustainable mining contractor selection problems: an imprecise last aggregation preference selection index method

Treść / Zawartość
Warianty tytułu
Języki publikacji
The increasing complexity surrounding decision-making situations has made it inevitable for practitioners to apply ideas from a group of experts or decision makers (DMs) instead of individuals. In a large proportion of recent studies, not enough attention has been paid to considering uncertainty in practical ways. In this paper, a hesitant fuzzy preference selection index (HFPSI) method is proposed based on a new soft computing approach with risk preferences of DMs to deal with imprecise multi-criteria decisionmaking problems. Meanwhile, qualitative assessing criteria are considered in the process of the proposed method to help the DMs by providing suitable expressions of membership degrees for an element under a set. Moreover, the best alternative is selected based on considering the concepts of preference relation and hesitant fuzzy sets, simultaneously. Therefore, DMs' weights are determined according to the proposed hesitant fuzzy compromise solution technique to prevent judgment errors. Moreover, the proposed method has been extended based on the last aggregation method by aggregating the DMs' opinions during the last stage to avoid data loss. In this respect, a real case study about the mining contractor selection problem is provided to represent the effectiveness and efficiency of the proposed HFPSI method in practice. Then, a comparative analysis is performed to show the feasibility of the presented approach. Finally, sensitivity analysis is carried out to show the effect of considering the DMs' weights and last aggregation approach in a dispersion of the alternatives’ ranking values.
Opis fizyczny
Bibliogr. 54 poz.
  • Planning and Development Deputy, Mobin Mining and Road Construction Company, Tehran, Iran
  • Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran
  • 1. Alonso, S., Chiclana, F., Herrera, F., Herrera-Viedma, E., Alcalá-Fdez, J., & Porcel, C. (2008). A consistency-based procedure to estimate missing pairwise preference values. International Journal of Intelligent Systems, 23(2), 155-175.
  • 2. Alonso, S., Herrera-Viedma, E., Chiclana, F., & Herrera, F. (2010). A web based consensus support system for group decision making problems and incomplete preferences. Information Sciences, 180(23), 4477-4495.
  • 3. Ataei, M., Sereshki, F., Jamshidi, M., & Jalali, S. (2008). Suitable mining method for Golbini No. 8 deposit in Jajarm (Iran) using TOPSIS method. Mining Technology, 117(1), 1-5.
  • 4. Attri, R., & Grover, S. (2015). Application of preference selection index method for decision making over the design stage of production system life cycle. Journal of King Saud University-Engineering Sciences, 27(2), 207-216.
  • 5. Azimi, R., Yazdani-Chamzini, A., Fouladgar, M. M., Zavadskas, E. K., & Basiri, M. H. (2011). Ranking the strategies of mining sector through ANP and TOPSIS in a SWOT framework. Journal of Business Economics and Management, 12(4), 670-689.
  • 6. Büyüközkan, G., & Çifçi, G. (2012). A new incomplete preference relations based approach to quality function deployment. Information Sciences, 206, 30-41.
  • 7. Chang, C.-L. (2010). A modified VIKOR method for multiple criteria analysis. Environmental Monitoring and Assessment, 168(1-4), 339-344.
  • 8. Chen, C.-T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114(1), 1-9.
  • 9. Chen, C.-T., Lin, C.-T., & Huang, S.-F. (2006). A fuzzy approach for supplier evaluation and selection in supply chain management. International Journal of Production Economics, 102(2), 289-301.
  • 10. Chen, S.-M., & Niou, S.-J. (2011). Fuzzy multiple attributes group decision-making based on fuzzy preference relations. Expert Systems with Applications, 38(4), 3865-3872.
  • 11. Chiclana, F., Herrera-Viedma, E., Alonso, S., & Herrera, F. (2009). Cardinal consistency of reciprocal preference relations: A characterization of multiplicative transitivity. IEEE Transactions on Fuzzy Systems, 17(1), 14-23.
  • 12. Ebrahimnejad, S., Hashemi, H., Mousavi, S., & Vahdani, B. (2015). A new intervalvalued intuitionistic fuzzy model to group decision making for the selection of outsourcing providers. Economic Computation & Economic Cybernetics Studies & Research, 49(2).
  • 13. Ebrahimnejad, S., Mousavi, S., Tavakkoli-Moghaddam, R., Hashemi, H., & Vahdani, B. (2012). A novel two-phase group decision making approach for construction project selection in a fuzzy environment. Applied Mathematical Modelling, 36(9), 4197-4217.
  • 14. Fedrizzi, M., & Pasi, G. (2008). Fuzzy logic approaches to consensus modelling in group decision making Intelligent Decision and Policy Making Support Systems. Springer.
  • 15. Foroozesh, N., Tavakkoli-Moghaddam, R., Mousavi, S., & Vahdani, B. (2017). Dispatching rule evaluation in flexible manufacturing systems by a new fuzzy decision model with possibilistic-statistical uncertainties. Arabian Journal for Science and Engineering, 1-14.
  • 16. Genç, S., Boran, F. E., Akay, D., & Xu, Z. (2010). Interval multiplicative transitivity for consistency, missing values and priority weights of interval fuzzy preference relations. Information Sciences, 180(24), 4877-4891.
  • 17. Hadipour, H., Azizmohammadi, R., & Mahmoudabadi, A. (2012). Sub-contractor selection in general contractor organizations using interval-valued fuzzy. In Paper presented at the 2012 International Conference on Industrial Engineering and Operations Management, Istanbul, Turkey.
  • 18. Herrera-Viedma, E., Herrera, F., & Chiclana, F. (2002). A consensus model for multiperson decision making with different preference structures. Systems, Man and Cybernetics, Part A: IEEE Transactions on Systems and Humans, 32(3), 394-402.
  • 19. Herrera-Viedma, E., Martinez, L., Mata, F., & Chiclana, F. (2005). A consensus support system model for group decision-making problems with multigranular linguistic preference relations. IEEE Transactions on Fuzzy Systems, 13(5), 644-658.
  • 20. Jaskowski, P., Biruk, S., & Bucon, R. (2010). Assessing contractor selection criteria weights with fuzzy AHP method application in group decision environment. Automation in Construction, 19(2), 120-126.
  • 21. Kacprzyk, J., Fedrizzi, M., & Nurmi, H. (1992). Group decision making and consensus under fuzzy preferences and fuzzy majority. Fuzzy Sets and Systems, 49(1), 21-31.
  • 22. Kusi-Sarpong, S., Bai, C., Sarkis, J., & Wang, X. (2015). Green supply chain practices evaluation in the mining industry using a joint rough sets and fuzzy TOPSIS methodology. Resources Policy, 46, 86-100.
  • 23. Liao, H., & Xu, Z. (2013). A VIKOR-based method for hesitant fuzzy multi-criteria decision making. Fuzzy Optimization and Decision Making, 12(4), 373-392.
  • 24. Maniya, K., & Bhatt, M. (2010). A selection of material using a novel type decision making method: Preference selection index method. Materials & Design, 31(4), 1785-1789.
  • 25. Mata, F., Martínez, L., & Herrera-Viedma, E. (2009). An adaptive consensus support model for group decision-making problems in a multigranular fuzzy linguistic context. IEEE Transactions on Fuzzy Systems, 17(2), 279-290
  • 26. Modak, M., Pathak, K., & Ghosh, K. K. (2017). Performance evaluation of outsourcing decision using a BSC and fuzzy AHP approach: A case of the indian coal mining organization. Resources Policy, 52, 181-191.
  • 27. Mohagheghi, V., Mousavi, S. M., & Vahdani, B. (2015). A new optimization model for project portfolio selection under interval-valued fuzzy environment. Arabian Journal for Science and Engineering, 40(11), 3351-3361.
  • 28. Mousavi, S. M., Gitinavard, H., Vahdani, B., & Foroozesh, N. (2016). Hierarchical group compromise ranking methodology based on Euclideane-Hausdorff distance measure under uncertainty: An application to facility location selection problem. Journal of Optimization in Industrial Engineering. in press
  • 29. Mousavi, S. M., Vahdani, B., Tavakkoli-Moghaddam, R., & Tajik, N. (2014). Soft computing based on a fuzzy grey group compromise solution approach with an application to the selection problem of material handling equipment. International Journal of Computer Integrated Manufacturing, 27(6), 547-569.
  • 30. Nuong, B. T., Kim, K.-W., Prathumratana, L., Lee, A., Lee, K.-Y., Kim, T.-H., et al. (2011). Sustainable development in the mining sector and its evaluation using fuzzy AHP (Analytic Hierarchy Process) approach. Geosystem Engineering, 14(1), 43-50.
  • 31. Pérez, I. J., Cabrerizo, F. J., & Herrera-Viedma, E. (2010). A mobile decision support system for dynamic group decision-making problems. Systems, Man and Cybernetics, Part A: IEEE Transactions on Systems and Humans, 40(6), 1244-1256.
  • 32. Pimentel, B. S., Gonzalez, E. S., & Barbosa, G. N. (2016). Decision-support models for sustainable mining networks: Fundamentals and challenges. Journal of Cleaner Production, 112, 2145-2157.
  • 33. Pourjavad, E., Shirouyehzad, H., & Shahin, A. (2013). Selecting maintenance strategy in mining industry by analytic network process and TOPSIS. International Journal of Industrial and Systems Engineering, 15(2), 171-192.
  • 34. Rahimdel, M. J., & Karamoozian, M. (2014). Fuzzy TOPSIS method to primary crusher selection for Golegohar Iron Mine (Iran). Journal of Central South University, 21(11), 4352-4359.
  • 35. Shen, L., Muduli, K., & Barve, A. (2015). Developing a sustainable development framework in the context of mining industries: AHP approach. Resources Policy, 46, 15-26.
  • 36. Sivakumar, R., Kannan, D., & Murugesan, P. (2015). Green vendor evaluation and selection using AHP and Taguchi loss functions in production outsourcing in mining industry. Resources Policy, 46, 64-75.
  • 37. Tanino, T. (1984). Fuzzy preference orderings in group decision making. Fuzzy Sets and Systems, 12(2), 117-131.
  • 38. Torra, V. (2010). Hesitant fuzzy sets. International Journal of Intelligent Systems, 25(6), 529-539.
  • 39. Torra, V., & Narukawa, Y. (2009). On hesitant fuzzy sets and decision. In Paper presented at 2009 IEEE 17th International Conference on Fuzzy Systems (FUZZ-IEEE).
  • 40. Vahdani, B. (2016). Solving robot selection problem by a new interval-valued hesitant fuzzy multi-attributes group decision method. International Journal of Industrial Mathematics, 8(3), 231-240.
  • 41. Vahdani, B., Mousavi, S. M., & Tavakkoli-Moghaddam, R. (2011). Group decision making based on novel fuzzy modified TOPSIS method. Applied Mathematical Modelling, 35(9), 4257-4269.
  • 42. Vahdani, B., Mousavi, S. M., Tavakkoli-Moghaddam, R., Ghodratnama, A., & Mohammadi, M. (2014). Robot selection by a multiple criteria complex proportional assessment method under an interval-valued fuzzy environment. International Journal of Advanced Manufacturing Technology, 73(5-8), 687-697.
  • 43. Wang, T.-C., & Chen, Y.-H. (2010). Incomplete fuzzy linguistic preference relations under uncertain environments. Information Fusion, 11(2), 201-207.
  • 44. Wei, G. (2012). Hesitant fuzzy prioritized operators and their application to multiple attribute decision making. Knowledge-Based Systems, 31, 176-182.
  • 45. Xia, M., & Xu, Z. (2011). Hesitant fuzzy information aggregation in decision making. International Journal of Approximate Reasoning, 52(3), 395-407.
  • 46. Xu, Z. (2004a). Goal programming models for obtaining the priority vector of incomplete fuzzy preference relation. International Journal of Approximate Reasoning, 36(3), 261-270.
  • 47. Xu, Z. (2004b). A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Information Sciences, 166(1), 19-30.
  • 48. Xu, Z. (2007). Multiple-attribute group decision making with different formats of preference information on attributes. Systems, Man, and Cybernetics, Part B: IEEE Transactions on Cybernetics, 37(6), 1500-1511.
  • 49. Xu, Z. (2008). Group decision making based on multiple types of linguistic preference relations. Information Sciences, 178(2), 452-467.
  • 50. Xu, Z., & Xia, M. (2011). Distance and similarity measures for hesitant fuzzy sets. Information Sciences, 181(11), 2128-2138.
  • 51. Xu, Z., & Zhang, X. (2013). Hesitant fuzzy multi-attribute decision making based on TOPSIS with incomplete weight information. Knowledge-Based Systems, 52, 53-64.
  • 52. Zhang, Z., Wang, C., Tian, D., & Li, K. (2014). Induced generalized hesitant fuzzy operators and their application to multiple attribute group decision making. Computers & Industrial Engineering, 67, 116-138.
  • 53. Zhang, N., & Wei, G. (2013). Extension of VIKOR method for decision making problem based on hesitant fuzzy set. Applied Mathematical Modelling, 37(7), 4938-4947.
  • 54. Zhu, B., Xu, Z., & Xia, M. (2012). Hesitant fuzzy geometric Bonferroni means. Information Sciences, 205, 72-85.
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.