PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diversity of Plant Biostimulants in Plant Growth Promotion and Stress Protection in Crop and Fibrous Plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zróżnicowanie biostymulatorów w indukcji wzrostu i ochronie przed czynnikami stresowymi roślin uprawnych i włóknotwórczych
Języki publikacji
EN
Abstrakty
EN
Nowadays, farmers and entrepreneurs strive to obtain higher and better quality seeds and plant products containing fibre by providing plants with optimal growth conditions using agrotechnical methods such as crop rotation, enhancing soil quality and protection against diseases. The use of biostimulants, substances that promote plant growth and resistance, seems to be the best way to achieve satisfying results. Biostimulants are included in the modern plant industry and environment-friendly crop management as they enhance the quality of crops while reducing chemical inputs. In textile plants, biostimulants can affect fibre structures regardless of the part of the plant they come from – seed, bast or leaf. The possible positive influence may be related to the increase in fibre length, shape, diameter, strength, flexibility, abrasion resistance, moisture absorbency, and antimicrobial properties. The purpose of this review is to better understand the unique characteristics of different biostimulants, which have a great influence on crop and fibrous plant properties.
PL
Obecnie rolnicy i przedsiębiorcy dążą do uzyskania lepszej jakości nasion i produktów roślinnych, w tym także włókna, po zapewnieniu roślinom optymalnych warunków wzrostu, stosując metody agrotechniczne, takie jak płodozmian, poprawa jakości gleby lub ochrona przed chorobami. Zastosowanie biostymulatorów, jako substancji sprzyjających indukcji wzrostu i ochrony roślin, wydaje się być najlepszym sposobem na osiągnięcie satysfakcjonujących rezultatów. Biostymulatory mogą stanowić część nowoczesnego i przyjaznego dla środowiska rolnictwa, ponieważ poprawiają jakość upraw, zmniejszając nakłady chemiczne. W roślinach włóknotwórczych, biostymulatory mogą wpływać na struktury włókien, niezależnie od części rośliny, z której pochodzą – nasion, pędu lub liścia. Pozytywny wpływ działania biostymulatorów może być związany ze wzrostem długości włókien, średnicy, wytrzymałości, elastyczności, odporności na ścieranie, absorpcji wilgoci lub właściwościami przeciwdrobnoustrojowymi. Celem pracy przeglądowej było lepsze zrozumienie unikalnych cech różnych biostymulatorów, mających istotny wpływ na właściwości roślin uprawnych i włóknotwórczych.
Rocznik
Strony
34--41
Opis fizyczny
Bibliogr. 126 poz., tab.
Twórcy
  • Łukasiewicz Research Network – Institute of Leather Industry, Zgierska 73, 91-462 Lodz, Poland
  • University of Lodz, Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, Banacha 12/16, 90-237 Lodz, Poland
  • Łukasiewicz Research Network – Institute of Leather Industry, Zgierska 73, 91-462 Lodz, Poland
  • Łukasiewicz Research Network – Institute of Leather Industry, Zgierska 73, 91-462 Lodz, Poland
Bibliografia
  • 1. Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH. Biostimulants in Plant Science: A Global Perspective. Front. Plant Sci. 2017; 7: 2049.
  • 2. Bulgari R, Cocetta G, Trivellini A, Vernieri P, Ferrante A. Biostimulants and Crop Responses: A Review. Biol Agric Hortic. 2015; 31(1) 1-17.
  • 3. Calvo P, Nelson L, Kloepper JW. Agricultural Uses of Plant Biostimulants. Plant Soil. 2014; 383: 3-41.
  • 4. Toscano S, Romano D, Massa D, Bulgari R, Franzoni G, Ferrante A. Biostimulant Applications in Low Input Horticultural Cultivation Systems. Italus Hortus. 2018; 25(2): 27-36.
  • 5. Rouphael Y, Colla G. Synergistic Biostimulatory Action: Designing the Next Generation of Plant Biostimulants for Sustainable Agriculture. Front. Plant Sci. 2018; 9:1655.
  • 6. Cristiano G, Pallozzi E, Conversa G, Tufarelli V and De Lucia B. Effects of an Animal-Derived Biostimulant on the Growth and Physiological Parameters of Potted Snapdragon (Antirrhinum Majus L.). Front. Plant Sci. 2018; 9: 861.
  • 7. Colla G, Rouphael Y, Canaguier R, Svecova E, Cardarelli M. Biostimulant Action of a Plant-Derived Protein Hydrolysate Produced Through Enzymatic Hydrolysis. Front. Plant Sci. 2014; 5: 448.
  • 8. EBIC 2018. Available from: http://www.biostimulants.eu/ (accessed 10.10.2019).
  • 9. Wilson HT, Amirkhani M, Taylor AG. Evaluation of Gelatin as a Biostimulant Seed Treatment to Improve Plant Performance. Front. Plant Sci. 2018; 9:1006.
  • 10. Kunicki E, Grabowska A, Sękara A, Wojciechowska R. The Effect of Cultivar Type, Time of Cultivation, and Biostimulant Treatment on the Yield of Spinach (Spinacia oleracea L). Folia Hortic. 2010; 22:9-13.
  • 11. Ziosi V, Zandoli R, Di Nardo A. Biological Activity of Different Botanical Extracts as Evaluated by Means of an Array of In Vitro and In Vivo Bioassays. Acta Hortic. 2013; 1009:61-66.
  • 12. Parađiković N, Teklić T, Zeljković S, Lisjak M, Špoljarević M. Biostimulants Research in Some Horticultural Plant Species – A Review. Food Energy Secur. 2019; 8:e00162.
  • 13. du Jardin P. Plant Biostimulants: Definition, Concept, Main Categories and Regulation. Sci. Hortic. 2015; 196: 3-14.
  • 14. Drobek M, Frąc M, Cybulska J. Plant Biostimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress-A Review. Agronomy. 2019; 9: 335.
  • 15. Nawrocka J, Małolepsza U. Diversity in Plant Systemic Resistance Induced by Trichoderma. Biol Control. 2013; 67: 149-156.
  • 16. Rayirath P, Benkel B, Mark Hodges D, Allan-Wojtas P, MacKinnon S, Critchley AT, et al. Lipophilic Components of the Brown Seaweed, Ascophyllum nodosum, Enhance Freezing Tolerance in Arabidopsis thaliana. Planta. 2009; 230(1): 135-47.
  • 17. Bradáčová K, Weber NF, Morad-Talab N, Asim M, Imran M, Weinmann M, et al. Micronutrients (Zn/Mn), Seaweed Extracts, and Plant Growth-Promoting Bacteria as Cold-Stress Protectants in Maize. Chem Biol Technol Agric. 2016; 3(1): 19.
  • 18. Elansary HO, Skalicka-Woźniak K, King IW. Enhancing Stress Growth Traits as Well as Phytochemical and Antioxidant Contents of Spiraea and Pittosporum Under Seaweed Extract Treatments. Plant Physiol Biochem. 2016; 105: 310-20.
  • 19. Zhang X, Ervin EH. Cytokinin-Containing Seaweed and Humic Acid Extracts Associated with Creeping Bentgrass Leaf Cytokinins and Drought Resistance. Crop Sci. 2004; 44(5): 1737.
  • 20. García AC, Santos LA, Izquierdo FG, Sperandio MVL, Castro RN, Berbara RLL. Vermicompost Humic Acids as an Ecological Pathway to Protect Rice Plant Against Oxidative Stress. Ecol Eng. 2012; 47: 203-8.
  • 21. El-Nemr MA, El-Desuki M, El-Bassiony AM, Fawzy ZF. Response of Growth and Yield of Cucumber Plants (Cucumis Sativus L.) To Different Foliar Applications of Humic Acid and Bio-Stimulators. Aust J Basic Appl Sci. 2012; 6:630-637.
  • 22. Anjum SA, Wang L, Farooq M, Xue L, Ali S. Fulvic Acid Application Improves the Maize Performance Under Well- Watered And Drought Conditions. J Agron Crop Sci. 2011b; 197: 409-417.
  • 23. Peng A, Xu Y, Wang ZJ. The Effect of Fulvic Acid on the Dose Effect of Selenite on the Growth of Wheat. Biol Trace Elem Res. 200183: 275-279.
  • 24. Rady MM, Abd El-Mageed TA, Abdurrahman HA, Mahdi AH. Humic Acid Application Improves Field Performance of Cotton (Gossypium Barbadense L.) Under Saline Conditions. J. Anim. Plant Sci. 2016, 26(2): 487-493.
  • 25. Belopukhov SL, Grishina EA, Dmitrevskaya II, Lukomets VM, Uschapovsky IV. Effect of Humic-Fulvic Complex on Flax Fiber and Seed Yield Characteristics. Известия ТСХА. 2015; 4: 631.811.98.
  • 26. Colla G, Rouphael Y, Di Mattia E, El-Nakhel C, Cardarelli M. Co-Inoculation of Glomus Intraradices And Trichoderma Atroviride Acts as a Biostimulant to Promote Growth, Yield and Nutrient Uptake of Vegetable Crops. J. Sci. Food Agric. 2015a; 95: 1706-1715.
  • 27. Azarmi R, Hajieghrari B, Giglou A. Effect of Trichoderma Isolates on Tomato Seedling Growth Response and Nutrient Uptake. Afr. J. Biotechnol. 2011; 10(31): 5850-5855.
  • 28. Nawrocka J, Małolepsza U, Szymczak K, Szczech M. Involvement of Metabolic Components, Volatile Compounds, PR Proteins, and Mechanical Strengthening in Multilayer Protection of Cucumber Plants Against Rhizoctonia Solani Activated by Trichoderma Atroviride TRS25. Protoplasma. 2018; 255, 359-373.
  • 29. Ertani A, Schiavon M, Muscolo A, Nardi S. Alfalfa Plant-Derived Biostimulant Stimulate Short-Term Growth of Salt Stressed Zea Mays L. Plants. Plant Soil. 2013; 364, 145-158.
  • 30. Zhu K, Zhou H, Qian H. Antioxidant and Free Radical-Scavenging Activities of Wheat Germ Protein Hydrolysates (WGPH) Prepared with Alcalase. Process Biochem. 2006; 41(6): 1296-302.
  • 31. Lucini L, Rouphael Y, Cardarelli M, Canaguier R, Kumar P, Colla G. The Effect of a Plant-Derived Biostimulant on Metabolic Profiling and Crop Performance of Lettuce Grown Under Saline Conditions. Sci Hortic. 2015; 23(182): 124-33.
  • 32. Lachhab N, Sanzani SM, Adrian M, Chilitz A, Balacey S, Boselli M. et al. Soybean and Casein Hydrolysates Induce Grapevine Immune Responses and Resistant Against Plasmopara Viticola. Front. Plant Sci. 2014; 5: 716.
  • 33. Craigie JS. Seaweed Extract Stimuli in Plant Science and Agriculture. J Appl Phycol. 2011; 23: 371-393.
  • 34. Jansa J, Gryndler M. Biotic Environment of the Arbuscular Mycorrhizal Fungi in Soil, In: Koltai H, Kapulnik Y, editors. Arbuscular Mycorrhizas: Physiology and Function Springer Science+Business Media B.V. 2010; pp. 223.
  • 35. Khan W, Rayirath UP, Subramanian S. et al. Seaweed Extracts as Biostimulants of Plant Growth and Development. J Plant Growth Regul. 2009; 28: 386-399.
  • 36. Zanin L, Tomasi N, Cesco S, Varanini Z and Pinton R. Humic Substances Contribute to Plant IronNutrition Acting as Chelators and Biostimulants. Front. Plant Sci. 2019; 10: 675.
  • 37. Tipping E. Cation Binding by Humic Substances. Cambridge: Cambridge University Press. 2002; 1-434.
  • 38. Trevisan S, Francioso O, Quaggiotti S, Nardi S. Humic Substances Biological Activityat the Plant-Soil Interface. From Environmental Aspects to Molecular Factors. Plant Signal Behav. 2010; 5:6, 635-643.
  • 39. Szczech M, Nawrocka J, Felczyński K, Małolepsza U, Sobolewski J, Kowalska B, Maciorowski R, Jas K, Kancelista A. Trichoderma Atroviride TRS25 Isolate Reduces Downy Mildew and Induces Systemic Defence Responses in Cucumber in Field Conditions. Sci. Hortic. 2017; 224: 17-26.
  • 40. Karolev N, Rav DD, Elad Y. The Role of Phytohormones in Basal Resistance and Trichoderma-Induced Systemic Resistance to Botrytis Cinerea in Arabidopsis Thaliana. Biol Control. 2008; 53: 667-683.
  • 41. Djonović S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM. Sm1, A Proteinaceous Elicitor Secreted by The Biocontrol Fungus Trichoderma Virens Induces Plant Defense Responses and Systemic Resistance. Mol Plant Microbe Interact. 2006; 7: 838-853.
  • 42. Martínez-Medina A, Fernández I, Sánchez-Guzmán M, Jung SC, Pascual JA, Pozo MJ. Deciphering the Hormonal Signalling Network Behind the Systemic Resistance Induced by Trichoderma Harzianum in Tomato. Front. Plant Sci. 2013; 4(206): 1-12.
  • 43. Nagaraju A, Sudisha J, Murthy SM. Ito SI. Seed Priming with Trichoderma Harzianum Isolates Enhances Plant Growth and Induces Resistance Against Plasmopara Halstedii, an Incitant of Sunflower Downy Mildew Disease. Australas Plant Path. 2012; 41: 609-620.
  • 44. De Palma M, D’Agostino N, Proietti S, Bertini L, Lorito M, Ruocco M, Caruso C, Chiusano ML, Tucci M. Suppression Subtractive Hybridization Analysis Provides New Insights into the Tomato (Solanum Lycopersicum L.) Response to the Plant Probiotic Microorganism Trichoderma Longibrachiatum MK1. J. Plant Physiol. 2016; 190: 79-94.
  • 45. Martinez C, Blanc F, Le Claire E, Besnard O, Nicole M, Baccou JC. Salicylic acid and Ethylene Pathways are Differentially Activated in Melon Cotyledons by Active or Heat-Denatured Cellulase from Trichoderma Longibrachiatum. Plant Physiology. 2001; 127: 334-344.
  • 46. Segarra G, Casanova E, Avilés M, Trillas I. Trichoderma Asperellum Strain T34 Controls Fusarium Wilt Disease in Tomato Plants in Soilless Culture Through Competition for Iron. Microb Ecol. 2010; 59(1): 141-9.
  • 47. Harman GE, Herrera-Estrella AH, Horwitz BA, Lorito M. Special Issue: Trichoderma – from Basic Biology to Biotechnology. Microbiology. 2012; 158: 1-2.
  • 48. Hermosa R, Viterbo A, Chet I, Monte E. Plant-Beneficial Effects of Trichoderma and of its Genes. Microbiology. 2012; 158: 17-25.
  • 49. Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P, Thakur S, Thakur N, Sudheer S, Yadav N, Yadav AN, Rastegari AA, Singh K. Trichoderma: Biodiversity, Ecological Significances, and Industrial Applications. In: Yadav AN, Mishra S, Singh S, Gupta A. editors. Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. 2019; pp. 85-109.
  • 50. Błaszczyk L., Siwulski M., Sobieralski K., Lisiecka J., Jędryczk M. Trichodermaspp. – Application and Prospects for use in Organic Farming and Industry. J. Plant Prot. Res. 2014; 54(4): 309-317.
  • 51. Hýsek J, Vach M, Brožová J, Sychrová E, Civínová M, Neděelník J, Hrubý J. The Influence of the Application of Mineral Fertilizers with the Biopreparation Supresivit (Trichoderma Harzianum) on the Health and the Yield of Different Crops. Arch Phytopathology Plant Protect. 2002; 35(2): 115-124.
  • 52. López-Bucio J, Pelagio-Flores R, Herrera-Estrella A. Trichoderma as Biostimulant: Exploiting the Multilevel Properties of a Plant Beneficial Fungus. Sci Hortic. 2015; 30(196): 109-23.
  • 53. Schiavon M, Pizzeghello D, Muscolo A, Vaccaro S, Francioso O, Nardi S. High Molecular Size Humic Substances Enhance Phenylpropanoid Metabolismin Maize (Zea Mays L.). J. Chem. Ecol. 2010; 36, 662-669.
  • 54. Vranova V, Rejsek K, Skene KR, Formanck P. Non-Protein Amino Acids: Plant, Soil and Acosystem Interactions. Plant Soil. 2011; 342:31-48.
  • 55. Tegeder M. Transporters for Amino Acids in Plant Cells: Some Functions and Many Unknowns. Curr. Opin. Plant. Biol. 2012; 15: 315-321.
  • 56. Kauffman GL, Kneival DP, Watschke TL. Effects of Biostimulant on the Heat Tolerance Associated with Photosynthetic Capacity, Membrane Thermostability, and Polphenol Production Ofperennial Ryegrass. CropSci. 2007; 47:261-267.
  • 57. Sharma A, Shankhdar D, Shankhdhar SC. Enhancing Grain Iron Content Of Rice By The Application Of Plant Growth Promoting Rhizobacteria. Plant Soil Environ. 2013; 59: 89-94.
  • 58. Norrie J, Keathley JP. Benefits of Ascophyllum Nodosum Marine-Plant Extract Applications to “Thompson Seedless’ Grape Production. Acta Hortic. 2006; 727: 243-247.
  • 59. Hamza B, Suggars A. Biostimulants: Myths and Realities. Turfgrass Trends. 2001; 10: 6-10.
  • 60. Canellas LP, Olivares FL, Aguiar NO, Jones DL, Nebbioso A, Mazzei P, et al. Humic and Fulvic Acids as Biostimulants in Horticulture. Sci Hortic. 2015; 30(196):15-27.
  • 61. Baldotto MA, Baldotto LEB. Gladiolus Development in Response to Bulb Treatment with Different Concentrations of Humic Acids. Rev Ceres. 2013; 60:138-142.
  • 62. Canellas LP, Olivares FL, Okorokova-Façanha AL, Façanha AR. Humic Acids Isolated from Earthworm Compost Enhance Root Elongation, Lateral Root Emergence, and Plasma Membrane HC-Atpase Activity In Maize Roots. Plant Physiol. 2002; 130: 1951-1957.
  • 63. Nardi S, Pizzeghello D, Muscolo A, Vianello A. Physiologicaleffects of Humic Substances on Higher Plants. Soil Biol. Biochem.2002; 34, 1527-1536.
  • 64. García AC, Olaetxea M, Santos LA, Mora V, Baigorri R, Fuentes M. et al. Involvement of Hormone-and ROS-Signaling Pathways in the Beneficial Action of Humic Substances on Plants Growing Under Normal and Stressing Conditions. BioMed. Res. Int. 2016b; 2016: 3747501.
  • 65. García AC, Santos LA, de Souza LGA, Tavares OCH, Zonta E, Gomes ETM. et al. Vermicompost Humic Acids Modulate the Accumulation and Metabolism of ROS in Rice Plants. J. Plant Physiol. 2016c; 192, 56-63.
  • 66. Ramos AC, Dobbss LB, Santos LA, Fernandes MS, Olivares FL, Aguiar NO et al. Humic Matter Elicits Proton and Calcium Fluxes and Signalling Dependent on Ca2+-Dependent Protein Kinase (CDPK) at Early Stages of Lateral Plant Root Development. Chem. Biol. Tech. Agr. 2015; 2: 3.
  • 67. Mora V, Baigorri R, Bacaicoa E, Zamarreño AM, García-Mina JM. The Humic Acid-Induced Changes in the Root Concentration of Nitric Oxide, IAA and Ethylene do not Explain the Changes in Root Architecture Caused by Humic Acid in Cucumber. Environ. Exp. Bot. 2012; 76, 24-32.
  • 68. Zandonadi DB, Santos MP, Dobbss LB, Olivares FL, Canellas LP, Binzel ML. et al. Nitric Oxide Mediates Humic Acids Induced Root Development and Plasma Membrane H+-Atpase Activation. Planta. 2010; 231, 1025-1036.
  • 69. Baldotto LEB, Baldotto MA, Giro VB, Canellas LP, Olivares FL, Bressan-Smith R. Performance of Pineapple ‘Vito´Ria’ in Response to the Application of Humic Acids During Acclimatization. Rev Bras Cieˆncia Solo.2009; 33: 979-990.
  • 70. Chen Y, Clapp CE, Magen H. Mechanisms of Plant Growth Stimulation by Humic Substances: The Role of Organo-Iron Complexes. Soil Sci Plant Nutr. 2004; 50: 1089-1095.
  • 71. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma Species – Opportunistic, Avirulent Plant Symbionts. Nat. Rev. Microbiol. 2004; 2(1): 43-56.
  • 72. Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J. Trichoderma Virens, A Plant Beneficial Fungus, Enhancesbiomass Production and Promotes Lateral Root Growththrough an Auxin-Dependent Mechanism in Arabidopsis. PlantPhysiol. 2009; 149(3): 1579-1592.
  • 73. Chowdappa P, Mohan KSP, Jyothi LM, Upreti KK. Growth Stimulationand Induction of Systemic Resistance in Tomato Against Early and Late Blight by Bacillus Subtilis OTPB1 or Trichoderma Harzianum OTPB3. Biological Control. 2013; 65: 109-117.
  • 74. Colla G, Nardi S, Cardarelli M, Ertani A, Lucini L, Canaguiere R, Rouphaelf Y. Protein Hydrolysates as Biostimulants in Horticulture. Sci. Hortic. 2015; 196: 28-38.
  • 75. Velmourougane K, Prasanna R, Chawla G, Nain L, Kumar A, Saxena K. Trichoderma – Azotobacter Biofilm Inoculation Improves Soil Nutrient Availability and Plant Growth in Wheat and Cotton. J Basic Microbiol.2019; 59: 632-644.
  • 76. Badda N, Yadav K, Kadian N, Aggarwal A. Impact of Arbuscular Mycorrhizal Fungi with Trichoderma Viride and Pseudomonas Fluorescens on Growth Enhancement of Genetically Modified Bt Cotton (Bacillus Thuringiensis). J Nat Fibers. 2013; 10: 309-325.
  • 77. Wilson AR, Nzokou P, Guney D, Kulac S. Growth Response and Nitrogen use Physiology of Fraser Fir (Abies Fraseri), Red Pine (Pinus Resinosa), and Hybrid Poplar Under Amino Acid Nutrition. New For. 2013; 44: 281-295.
  • 78. Colla G, Hoagland L, Ruzzi M, Cardarelli M, Bonini P, Canaguier R, Rouphael Y. Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Front. Plant Sci. 2017; 8:2202.
  • 79. O’Brien JA, Vega A, Bouguyon E, Krouk G, Gojon A, Coruzzi G, Rodrigo AG. Nitrate Transport, Sensing, and Responses in Plants. Mol Plant. 2016; 9, 837-856.
  • 80. Miller AJ, Fan X, Shen Q, Smith SJ. Amino Acids and Nitrate as Signals for the Regulation of Nitrogen Acquisition. J. Exp. Bot. 2007; 59, 111-119.
  • 81. Fan X, Gordon-Weeks R, Shen QR, Miller AJ. Glutamine Transport and Feedback Regulation of Nitrate Reductase Activity in Barley Roots Leads to Changes in Cytosolic Nitrate Pools. J. Exp. Bot. 2006; 57, 1333-1340.
  • 82. Colla G, Svecova E, Rouphael Y, Cardarelli M, Reynaud H, Canaguier R, Planques B. Effectiveness of a Plant–Derived Protein Hydrolysate to Improve Crop Performances under Different Growing Conditions. Acta Hortic. 2013; 1009: 175-179.
  • 83. Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A. The Role of Biostimulants and Bioeffectors as Alleviators of Abiotic Stress in Crop Plants. Chem. Biol. Technol. Agric. 2017; 4:5.
  • 84. Santaniello A, Scartazza A, Gresta F, Loreti E, Biasone A, Di Tommaso D, Piaggesi A, Perata P. Ascophyllum Nodosumseaweed Extract Alleviates Drought Stress in Arabidopsis by Affecting Photosynthetic Performanceand Related Gene Expression. Front. Plant Sci. 2017; 8: 1362.
  • 85. Olivares FL, Aguiar NO, Rosa RCC, Canellas LP. Substrate Biofortification in Combination with Foliar Sprays of Plant Growth Promoting Bacteria and Humic Substances Boosts Production of Organic Tomatoes. Sci. Hortic. 2015; 183, 100-108.
  • 86. Zancani M, Bertolini A, Petrussa E, Krajňájivá J, Piccolo A. Fulvic Acid Affects Proliferation and Maturation Phases in Abies Cephalonica Embryogenic Cells. J Plant Physiol. 2011; 168: 1226-1233.
  • 87. Azevedo RA, Lea PJ. Research on Abiotic and Biotic Stress – What Next? Ann. Appl. Biol. 2011; 159: 317-319.
  • 88. Bolton MD. Primary Metabolism and Plant Defense-Fuel for the Fire. Mol Plant Microbe Interact. 2009; 5, 487-497.
  • 89. Monte E. Understanding Trichoderma, between Biotechnology and Microbial Ecology. Int Microbiol. 2001;4(1): 1-4.
  • 90. Ertani A, Pizzeghelio D, Altissimo A, Nardi S. Use Ofmeat Hydrolyzate Derived From Tanning Residues as Plant Biostimulant for Hydroponically Grown Maize. J Plant Nutr Soil Sci. 2013a; 176: 287-296.
  • 91. Apone F, Tito A, Carola A et al. A Mixture of Peptides and Sugars Derived from Plant Cell Walls Increases Plant Defense Responses to Stress and Attenuates Ageing- Associated Molecular Changes in Cultured Skin Cells. J Biotechnol. 2010; 145: 367-376.
  • 92. AshrafM, Foolad MR. Roles Of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance. Environ Exp Bot. 2007; 59: 206-216.
  • 93. Chen THH, Murata N. Glycinebetaine: An Effective Protectant Against Abiotic Stress in Plants. Trends Plant Sci. 2008;13: 499-505.
  • 94. Liang XW, Zhang L, Natarajan SK, Beckker DF. Proline Mechanisms of Stress Survival. Antioxid Redox Sign. 2013; 19: 998-1011.
  • 95. dos Reis SP, Lima AM, de Souza CRB. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress. Int J Mol Sci. 2012; 13: 8628-8647.
  • 96. Anjum SA, Farooq M, Wang LC et al. Gas Exchange and Chlorophyll Synthesis of Maize Cultivars are Enhanced by Exogenously-Applied Glycinebetaine Under Drought Conditions. Plant Soil Environ. 2011a; 57: 326-331.
  • 97. Einset J, Nielson E, Connolly EL et al. Membrane-Trafficking Raba4c Involved in the Effect of Glycine Betaine on Recovery from Chilling Stress in Arabidopsis. Physiol Plant. 2007; 130: 511-518.
  • 98. Einset J, Winge P, Bones AM, Connolly EL. The FRO2 Ferric Reductase is Required for Glycine Betaine’s Effect on Chilling Tolerance in Arabidopsis Roots. Physiol Plant. 2008; 134: 334-341.
  • 99. Kinnersley AM, Turano FJ. Gamma Aminobutyric Acid (GABA) and Plant Responses to Stress. Crit Rev Plant Sci.2000;19: 479-509.
  • 100. Visconti F, De Paz JM, Bonet L, Jordà M, Quiñones A, Intrigliolo DS. Effects of a Commercial Calcium Protein Hydrolysate on the Salt Tolerance of Diospyros Kaki L. Cv. “Rojo Brillante” Grafted on Diospyros Lotus L. Sci Hortic. 2015;185: 129-38.
  • 101. Zimniewska M, Wladyka-Przybylak M, Mankowski J. Cellulosic Bast Fibers, Their Structure and Properties Suitable for Composite Applications. In: Kalia S, Kaith BS, Kaur I. Editors. Cellulose Fibers: Bio- and Nano-Polymer Composites. Green Chemistry and Technology 2011; 97-119.
  • 102. Thyavihalli Girijappa YG, Mavinkere Rangappa S, Parameswaranpillai J, Siengchin S. Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Front. Mater. 2019; 6: 226.
  • 103. Silva RA, Santos JL, Oliveira LS, Soares MRS, dos Santos SMS. Biostimulants on Mineral Nutrition and Fiber Quality of Cotton Crop. R. Bras. Eng. Agríc. Ambiental. 2016; 20(12): 1062-1066.
  • 104. Belopukhov SL, Daydakova IV, Malinovskaya EA. Research of Effects of Plant Growth Stimulants on Chemical Composition of Long-Fibred Flax at Different Vegetation Stages. Chemistry and Computational Simulation. Butlerov Communications 2002; 2(7): 69-72.
  • 105. Mariselvam R, Athinarayanan G, Ranjitsingh AJA, Usha Raja Nanthini A, Krishnamoorthy R, Alshatwi A.A. Extraction of Dyes from Petrocarpus santalinus and Dyeing of Natural Fibres Using Different Mordants. FIBRES & TEXTILES in Eastern Europe 2018; 26, 5(131): 20-23. DOI: 10.5604/01.3001.0011.7312.
  • 106. Yavas A, Avinc O, Gedik G. Ultrasound and Microwave Aided Natural Dyeing of Nettle Biofibre (Urtica dioica L.) with Madder (Rubia tinctorum L.) FIBRES & TEXTILES in Eastern Europe 2017; 25, 4(124): 111-120. DOI: 10.5604/01.3001.0010.2856
  • 107. Kopania E, Wietecha J, Ciechańska D. Studies on Isolation of Cellulose Fibres from Waste Plant Biomass. FIBRES & TEXTILES in Eastern Europe 2012; 20, 6B (96): 167-172.
  • 108. Karahan M, Ozkan F, Yildirim K, Karahan N. Investigation of the Properties of Natural Fibre Woven Fabrics as a Reinforcement Materials for Green Composites. FIBRES & TEXTILES in Eastern Europe 2016; 24, 4(118): 98-104. DOI: 10.5604/12303666.1201138.
  • 109. Thomas S, Paul SA, Pothan LA, Deepa B. Natural Fibres: Structure, Properties and Applications. In: Kalia S, Kaith BS, Kaur I. editors. Cellulose Fibers: Bioand Nano-Polymer Composites. Green Chemistry and Technology 2011; 4-28.
  • 110. Szparaga A, Kocira S, Kocira A, Czerwińska E, Świeca M, Lorencowicz E, Kornas R, Koszel M, Oniszczuk T. Modification of Growth, Yield, and the Nutraceutical and Antioxidative Potential of Soybean Through the use of Synthetic Biostimulants. Front. Plant Sci. 2018; 9:1401.
  • 111. Sahari J, Sapuan SM, Ismarrubie ZN, Rahman MZA. Physical and Chemical Properties of Different Morphological Parts of Sugar Palm Fibres. FIBRES & TEXTILES in Eastern Europe 2012; 20, 2(91): 21-24.
  • 112. Frydrych I, Raczynska M, Cekus Z. Measurement of Cotton Fineness and Maturity by Different Methods. FIBRES & TEXTILES in Eastern Europe 2010; 18, 6 (83): 54-59.
  • 113. Kocira S, Szparaga A, Kocira A, Czerwińska E, Depo K, Erlichowska B, Deszcz E. Effect of Applying a Biostimulant Containing Seaweed and Amino Acids on the Content of Fiber Fractions in Three Soybean Cultivars. Legume Res. 2019; 42(3): 341-347.
  • 114. Nardi S, Pizzeghello D, Schiavon M, Ertani A. Plant Biostimulants: Physiological Responses Induced by Protein Hydrolyzed-Basedproducts and Humic Substances in Plant Metabolism. Sci. Agric. 2016; 73(1): 18-23.
  • 115. Wang J, Wang H, Zhao P, Han L, Jiao G, Zheng Y, Huang S, Xia G. Overexpression of a Profilin (GhPFN2) Promotes the Progression of Developmental Phases in Cotton Fibers. Plant Cell Physiol. 2010; 51: 1276-1290.
  • 116. Hanafy Ahmed AH, Darwish E, Hamoda SA, Alobaidy MG. Effect of Putrescine and Humic Acid on Growth, Yield and Chemical Composition of Cotton Plants Grown Under Saline Soil Conditions. Am-Euras. J. Agric. & Environ. Sci. 2013; 13 (4): 479-497.
  • 117. Bakry BA, Taha MH, Abdelgawad ZA, Abdallah MMS. The Role of Humic Acid and Proline on Growth, Chemical Constituents and Yield Quantity and Quality of Three Flax Cultivars Grown Under Saline Soil Conditions. Agric Sci. 2014; 5: 1566-1575.
  • 118. Dienes D, Egyházi A, Réczey K. Treatment of Recycled Fiber with Trichoderma Cellulases. Ind Crops Prod. 2004; 20: 11-21.
  • 119. Pere J, Puolakka A, Nousiainen P, Buchert J. Action of Purified Trichoderma Reesei Cellulases on Cotton Fibers and Yarn. J Biotechnol. 2001; 89(2-3): 247-255.
  • 120. de França Passos D, Pereira Jr. N, Machado de Castro A. A Comparative Review of Recent Advances in Cellulases Production by Aspergillus, Penicillium and Trichoderma Strains and their use for Lignocellulose Deconstruction. Current Opinion in Green and Sustainable Chemistry 2018; 14: 60-66.
  • 121. Al-Samaraee WH, Ahmed AA, Hussein HZ, Alwaeli SN. Effect of Trichoderma Harzianum, on Chemical Composition and In Vitro Digestibility of Crop Residues. Plant Archives 2019; 19(2): 3623-3628.
  • 122. Prasad BMVS, Bhattiprolu SL, Kumari VP, Kumar PA. Study of Antagonistic Capabilities of Trichoderma spp. against Alternaria macrospora Zimm. Causing Leaf Spot in Cotton. Int.J.Curr. Microbiol.App.Sci. 2018; 7(6): 1146-1154.
  • 123. Gallou A, Cranenbrouck S, Declerck S. Trichoderma Harzianum Elicits Defence Response Genes in Roots of Potato Plantlets Challenged by Rhizoctonia Solani.Eur J Plant Pathol. 2009; 124(2): 219-230.
  • 124. Kumar N, Tripathi UK. In Vitro Efficacy of Trichoderma Spp. and Plant Extracts on Alternaria Lini Cause Blight Disease in Linseed (Linum Usitatissimum L.). J. Pharmacogn. Phytochem. 2018; 7(2): 1478-1482.
  • 125. Meena B, Ramjegathesh R, Ramyabharathi SA. Evaluation of Biocontrol Agents and Fungicides against Stem Bleeding Disease of Coconut. J. Plant.Crops. 2014; 42(3): 395-399.
  • 126. Bhattacharyya SK, Sen K, De RK, Bandopadhyay A, Sengupta C, Adhikary NK. Integration of Biocontrol Agents with Fungicide, Weedicide and Plant Growth Regulator for Management of Stem and Root Rot of Jute. J. Nat. Appl. Sci. 2017; 9(2): 899-904.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ae484a5-fc17-43df-9399-6238e84db757
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.