PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Ionic liquids as alternative solvents for energy conservation and environmental engineering

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Because of industrialization and modernization, phenomenal changes have taken place in almost all spheres of life. Consequently, the consumption of energy resources and the cases of environmental hazards have risen to an unprecedentedly high level. A development model with due consideration to nature and an efficient utilization of energy sources has become the need of the hour, in order to ensure a sustainable balance between the environmental and technological needs. Recent studies have identified the suitability of ionic liquids (ILs), often labeled as ‘green solvents’, in the efficient utilization of energy resources and activities such as bio-extraction, pollution control, CO2 capture, waste management etc. in an environmentally friendly manner. The advent of magnetic ionic liquids (MILs) and deep eutectic solvents (DESs) have opened possibilities for a circular economic approach in this filed. This review intends to analyze the environmental and energy wise consumption of a wide variety of ionic liquids and their potential towards future.
Twórcy
  • Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
  • Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
  • Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
Bibliografia
  • [1] J.D. Moyer, S. Hedden, Are we on the right path to achieve the sustainable development goals?, World Dev. 127 (2020) 104749. https://doi.org/10.1016/j.worlddev.2019.104749.
  • [2] J.L. Martin, V. Maris, D.S. Simberloff, The need to respect nature and its limits challenges society and conservation science, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 6105–6112. https://doi.org/10.1073/pnas.1525003113.
  • [3] E.C. Penning-Rowsell, Further internationalisation of Environmental Hazards and its links to the UN Sustainable Development Goals, (2020) 417–420.
  • [4] C. Austen Angell, Y. Ansari, Z. Zhao, Ionic Liquids: Past, present and future, Faraday Discuss. 154 (2012) 9–27. https://doi.org/10.1039/c1fd00112d.
  • [5] N. Schaeffer, H. Passos, I. Billard, N. Papaiconomou, J.A. Coutinho, Recovery of metals from waste electrical and electronic equipment (WEEE) using unconventional solvents based on ionic liquids, Crit. Rev. Environ. Sci. Technol. 48 (2018) 859–922. https://doi.org/10.1080/10643389.2018.1477417.
  • [6] F. van Rantwijk, R.A. Sheldon, Biocatalysis in ionic liquids, Chem. Rev. 107 (2007) 2757–2785. https://doi.org/10.1021/cr050946x.
  • [7] B. Tang, W. Bi, M. Tian, K.H. Row, Application of ionic liquid for extraction and separation of bioactive compounds from plants, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 904 (2012) 1–21. https://doi.org/10.1016/j.jchromb.2012.07.020.
  • [8] A. Joseph, G. Zyła, V.I. Thomas, P.R. Nair, A.S. Padmanabhan, S. Mathew, Paramagnetic ionic liquids for advanced applications: A review, J. Mol. Liq. 218 (2016) 319–331. https://doi.org/10.1016/j.molliq.2016.02.086.
  • [9] S. Hayashi, H.O. Hamaguchi, Discovery of a magnetic ionic liquid [bmim]FeCl4, Chem. Lett. 33 (2004) 1590–1591. https://doi.org/10.1246/cl.2004.1590.
  • [10] A.P. Abbott, J.C. Barron, K.S. Ryder, D. Wilson, Eutectic-based ionic liquids with metal-containing anions and cations, Chem. - A Eur. J. 13 (2007) 6495–6501. https://doi.org/10.1002/chem.200601738.
  • [11] E. M.B. Shiflett, Commercial Applications of Ionic Liquids, Springer, Berlin, 2020.
  • [12] B. Lal, A. Qasim, A. Mohammad Shariff, Ionic Liquids Usage in Oil and Gas Industry, in: Ion. Liq. Flow Assur., SpringerBriefs, 2021: pp. 1–16. https://doi.org/10.1007/978-3-030-63753-8_1.
  • [13] A. Bera, J. Agarwal, M. Shah, S. Shah, R.K. Vij, Recent advances in ionic liquids as alternative to surfactants/chemicals for application in upstream oil industry, J. Ind. Eng. Chem. 82 (2020) 17–30. https://doi.org/10.1016/j.jiec.2019.10.033.
  • [14] Y. Ren, Y. Zhai, L. Wu, W. Zhou, H. Qin, P. Wang, Amine- and alcohol-functionalized ionic liquids: Inhibition difference and application in water-based drilling fluids for wellbore stability, Colloids Surfaces A Physicochem. Eng. Asp. 609 (2021) 125678. https://doi.org/10.1016/j.colsurfa.2020.125678.
  • [15] T.N. Ofei, C.B. Bavoh, A.B. Rashidi, Insight into ionic liquid as potential drilling mud additive for high temperature wells, J. Mol. Liq. 242 (2017) 931–939. https://doi.org/10.1016/j.molliq.2017.07.113.
  • [16] C.B. Bavoh, T.N. Ofei, B. Lal, A.M. Sharif, M.H.B.A. Shahpin, J.D. Sundramoorthy, Assessing the impact of an ionic liquid on NaCl/KCl/polymer water-based mud (WBM) for drilling gas hydrate-bearing sediments, J. Mol. Liq. 294 (2019) 111643. https://doi.org/10.1016/j.molliq.2019.111643.
  • [17] L. Yang, G. Jiang, Y. Shi, X. Lin, X. Yang, Erratum to: Application of ionic liquid to a high-performance calcium-resistant additive for filtration control of bentonite/water-based drilling fluids (Journal of Materials Science, (2017), 52, 11, (6362-6375), 10.1007/s10853-017-0870-7), J. Mater. Sci. 52 (2017) 6812–6813. https://doi.org/10.1007/s10853-017-0920-1.
  • [18] M.A. Betiha, A.E. Elmetwally, A.M. Al-Sabagh, T. Mahmoud, Catalytic Aquathermolysis for Altering the Rheology of Asphaltic Crude Oil Using Ionic Liquid Modified Magnetic MWCNT, Energy and Fuels. 34 (2020) 11353–11364. https://doi.org/10.1021/acs.energyfuels.0c02062.
  • [19] C.B. Bavoh, Y.B. Md Yuha, W.H. Tay, T.N. Ofei, B. Lal, H. Mukhtar, Experimental and modelling of the impact of quaternary ammonium salts/ionic liquid on the rheological and hydrate inhibition properties of xanthan gum water-based muds for drilling gas hydrate-bearing rocks, J. Pet. Sci. Eng. 183 (2019) 106468. https://doi.org/10.1016/j.petrol.2019.106468.
  • [20] M.A. Betiha, G.G. Mohamed, N.A. Negm, M.F. Hussein, H.E. Ahmed, Fabrication of ionic liquid-cellulose-silica hydrogels with appropriate thermal stability and good salt tolerance as potential drilling fluid, Arab. J. Chem. 13 (2020) 6201–6220. https://doi.org/10.1016/j.arabjc.2020.05.027.
  • [21] R. Ahmed Khan, M. Murtaza, A. Abdulraheem, M.S. Kamal, M. Mahmoud, Imidazolium-Based Ionic Liquids as Clay Swelling Inhibitors: Mechanism, Performance Evaluation, and Effect of Different Anions, ACS Omega. 5 (2020) 26682–26696. https://doi.org/10.1021/acsomega.0c03560.
  • [22] Z. Luo, L. Wang, P. Yu, Z. Chen, Experimental study on the application of an ionic liquid as a shale inhibitor and inhibitive mechanism, Appl. Clay Sci. 150 (2017) 267–274. https://doi.org/10.1016/j.clay.2017.09.038.
  • [23] L. Yang, X. Yang, T. Wang, G. Jiang, P.F. Luckham, X. Li, H. Shi, J. Luo, Effect of Alkyl Chain Length on Shale Hydration Inhibitive Performance of Vinylimidazolium-Based Ionic Liquids, Ind. Eng. Chem. Res. 20 (2019) 8565–8577. https://doi.org/10.1021/acs.iecr.9b01016.
  • [24] L. Yang, G. Jiang, Y. Shi, X. Yang, Application of Ionic Liquid and Polymeric Ionic Liquid as Shale Hydration Inhibitors, Energy and Fuels. 31 (2017) 4308–4317. https://doi.org/10.1021/acs.energyfuels.7b00272.
  • [25] J. gen Xu, Z. Qiu, X. Zhao, H. Zhong, W. Huang, Study of 1-Octyl-3-methylimidazolium bromide for inhibiting shale hydration and dispersion, J. Pet. Sci. Eng. 177 (2019) 208–214. https://doi.org/10.1016/j.petrol.2019.02.064.
  • [26] S. Sakthivel, R.L. Gardas, J.S. Sangwai, Effect of Alkyl Ammonium Ionic Liquids on the Interfacial Tension of the Crude Oil-Water System and Their Use for the Enhanced Oil Recovery Using Ionic Liquid-Polymer Flooding, Energy and Fuels. 30 (2016) 2514–2523. https://doi.org/10.1021/acs.energyfuels.5b03014.
  • [27] S.K. Nandwani, N.I. Malek, M. Chakraborty, S. Gupta, Insight into the Application of Surface-Active Ionic Liquids in Surfactant Based Enhanced Oil Recovery Processes-A Guide Leading to Research Advances, Energy and Fuels. 34 (2020) 6544–6557. https://doi.org/10.1021/acs.energyfuels.0c00343.
  • [28] P. Pillai, A. Mandal, A comprehensive micro scale study of poly-ionic liquid for application in enhanced oil recovery: Synthesis, characterization and evaluation of physicochemical properties, J. Mol. Liq. 302 (2020) 112553. https://doi.org/10.1016/j.molliq.2020.112553.
  • [29] X. Dong, H. Liu, Z. Chen, K. Wu, N. Lu, Q. Zhang, Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection, Appl. Energy. 239 (2019) 1190–1211. https://doi.org/10.1016/j.apenergy.2019.01.244.
  • [30] X. Li, J. Wang, L. He, H. Sui, W. Yin, Ionic Liquid-Assisted Solvent Extraction for Unconventional Oil Recovery: Computational Simulation and Experimental Tests, Energy and Fuels. 30 (2016) 7074–7081. https://doi.org/10.1021/acs.energyfuels.6b01291.
  • [31] M.E. EL-Hefnawy, A.M. Atta, M. El-Newehy, A.I. Ismail, Synthesis and characterization of imidazolium asphaltenes poly (ionic liquid) and application in asphaltene aggregation inhibition of heavy crude oil, J. Mater. Res. Technol. 9 (2020) 14682–14694. https://doi.org/10.1016/j.jmrt.2020.10.038.
  • [32] M. Ul Hassan Shah, M. Sivapragasam, M. Moniruzzaman, M. Mahabubur Rahman Talukder, S. Bt Yusup, Dispersion of crude oil by choline based ionic liquids, in: Mater. Today Proc., 2018: pp. 21661–21666. https://doi.org/10.1016/j.matpr.2018.07.016.
  • [33] B. Coto, I. Suárez, M. Chirita, J. Conde, R. Giménez, N. Rodriguez, N. Alvarez, J.L. Peña, Oil acidity reduction by extraction with [EMIM][EtSO4]: Experimental and model description, Sep. Purif. Technol. 223 (2019) 234–242. https://doi.org/10.1016/j.seppur.2019.04.070.
  • [34] V.A. Joshi, D. Kundu, Ionic liquid promoted extraction of bitumen from oil sand: A review, J. Pet. Sci. Eng. 199 (2021) 108232. https://doi.org/10.1016/j.petrol.2020.108232.
  • [35] Z. Zhang, N. Kang, J. Wang, H. Sui, L. He, X. Li, Synthesis and application of amino acid ionic liquid-based deep eutectic solvents for oil-carbonate mineral separation, Chem. Eng. Sci. 181 (2018) 264–271. https://doi.org/10.1016/j.ces.2018.02.023.
  • [36] N.E. Paucar, P. Kiggins, B. Blad, K. De Jesus, F. Afrin, S. Pashikanti, K. Sharma, Ionic liquids for the removal of sulfur and nitrogen compounds in fuels: a review, Environ. Chem. Lett. (2021) 1–24. https://doi.org/10.1007/s10311-020-01135-1.
  • [37] L. Wang, Z. Li, G. Jin, N. Zuo, Y. Xu, Effort of ionic liquids with [HSO4]- on oxidative desulphurization of coal, Can. J. Chem. Eng. 97 (2019) 1299–1306. https://doi.org/10.1002/cjce.23374.
  • [38] R.N. Patra, R.L. Gardas, Effect of Nitro Groups on Desulfurization Efficiency of Benzyl-Substituted Imidiazolium-Based Ionic Liquids: Experimental and Computational Approach, Energy and Fuels. 33 (2019) 7659–7666. https://doi.org/10.1021/acs.energyfuels.9b01279.
  • [39] Z. Ullah, A.S. Khan, N. Muhammad, R. Ullah, A.S. Alqahtani, S.N. Shah, O. Ben Ghanem, M.A. Bustam, Z. Man, A review on ionic liquids as perspective catalysts in transesterification of different feedstock oil into biodiesel, J. Mol. Liq. 266 (2018) 673–686. https://doi.org/10.1016/j.molliq.2018.06.024.
  • [40] D. Moreno, V.R. Ferro, J. de Riva, R. Santiago, C. Moya, M. Larriba, J. Palomar, Absorption refrigeration cycles based on ionic liquids: Refrigerant/absorbent selection by thermodynamic and process analysis, Appl. Energy. 213 (2018) 179–194. https://doi.org/10.1016/j.apenergy.2018.01.034.
  • [41] S.J. Hong, C. Dang, H. Okamoto, Z. Wang, E. Hihara, Novel absorption refrigeration system with a hollow fiber membrane-type generator, Refrig. Sci. Technol. (2015) 4767–4774. https://doi.org/10.18462/iir.icr.2015.0455.
  • [42] J.E. Sosa, R.P.P.L. Ribeiro, P.J. Castro, J.P.B. Mota, J.M.M. Araújo, A.B. Pereiro, Absorption of Fluorinated Greenhouse Gases Using Fluorinated Ionic Liquids, Ind. Eng. Chem. Res. 58 (2019) 20769–20778. https://doi.org/10.1021/acs.iecr.9b04648.
  • [43] A.E. Torrella, La Producción de frio, Universitat Politècnica de València, 2000.
  • [44] D. Zheng, L. Dong, W. Huang, X. Wu, N. Nie, A review of imidazolium ionic liquids research and development towards working pair of absorption cycle, Renew. Sustain. Energy Rev. 37 (2014) 47–68. https://doi.org/10.1016/j.rser.2014.04.046.
  • [45] W. Wu, M. Leung, Z. Ding, H. Huang, Y. Bai, L. Deng, Comparative analysis of conventional and low-GWP refrigerants with ionic liquid used for compression-assisted absorption cooling cycles, Appl. Therm. Eng. 172 (2020) 115–145. https://doi.org/10.1016/j.applthermaleng.2020.115145.
  • [46] K.E. Herold, R. Radermacher, S.A. Klein, Absorption chillers and heat pumps, CRC Press, 2016.
  • [47] A. Yokozeki, M.B. Shiflett, Ammonia solubilities in room-temperature ionic liquids, Ind. Eng. Chem. Res. 46 (2007) 1605–1610. https://doi.org/10.1021/ie061260d.
  • [48] G. Li, Q. Zhou, X. Zhang, LeiWang, S. Zhang, J. Li, Solubilities of ammonia in basic imidazolium ionic liquids, Fluid Phase Equilib. 297 (2010) 34–39. https://doi.org/10.1016/j.fluid.2010.06.005.
  • [49] Y. Bai, W. Chen, C. Xu, Q. Sun, B. Zhang, Y. He, Investigation on the thermal performances of [Na(TX-7)]SCN/NH3 absorption systems based on physical properties measurement of the working fluid, Appl. Therm. Eng. 183 (2021) 116–175. https://doi.org/10.1016/j.applthermaleng.2020.116175.
  • [50] E.K. Karakatsani, I.G. Economou, M.C. Kroon, C.J. Peters, G.J. Witkamp, tPC-PSAFT modeling of gas solubility in imidazolium-based ionic liquids, J. Phys. Chem. C. 111 (2007) 15487–15492. https://doi.org/10.1021/jp070556+.
  • [51] A. Yokozeki, M.B. Shiflett, Gas solubilities in ionic liquids using a generic van der Waals equation of state, J. Supercrit. Fluids. 55 (2010) 846–851. https://doi.org/10.1016/j.supflu.2010.09.015.
  • [52] U. Domańska, M. Zawadzki, K. Paduszyński, M. Królikowski, Perturbed-chain SAFT as a versatile tool for thermodynamic modeling of binary mixtures containing isoquinolinium ionic liquids, J. Phys. Chem. B. 116 (2012) 8191–8200. https://doi.org/10.1021/jp303988k.
  • [53] A. Shojaeian, H. Fatoorehchi, Modeling solubility of refrigerants in ionic liquids using Peng Robinson-Two State equation of state, Fluid Phase Equilib. 486 (2019) 80–90. https://doi.org/10.1016/j.fluid.2019.01.003.
  • [54] X. Liu, M.Q. Nguyen, S. Xue, C. Song, M. He, Vapor–liquid equilibria and inter-diffusion coefficients for working pairs for absorption refrigeration systems composed of [HMIM][BF4] and fluorinated propanes, Int. J. Refrig. 104 (2019) 34–41. https://doi.org/10.1016/j.ijrefrig.2019.04.023.
  • [55] S. Asensio-Delgado, F. Pardo, G. Zarca, A. Urtiaga, Vapor-Liquid Equilibria and Diffusion Coefficients of Difluoromethane, 1,1,1,2-Tetrafluoroethane, and 2,3,3,3-Tetrafluoropropene in Low-Viscosity Ionic Liquids, J. Chem. Eng. Data. 65 (2020) 4242–4251. https://doi.org/10.1021/acs.jced.0c00224.
  • [56] A.R.C. Morais, A.N. Harders, K.R. Baca, G.M. Olsen, B.J. Befort, A.W. Dowling, E.J. Maginn, M.B. Shiflett, Phase Equilibria, Diffusivities, and Equation of State Modeling of HFC-32 and HFC-125 in Imidazolium-Based Ionic Liquids for the Separation of R-410A, Ind. Eng. Chem. Res. 59 (2020) 18222–18235. https://doi.org/10.1021/acs.iecr.0c02820.
  • [57] Y. Li, H. Tao, B. Su, Z.W. Kundzewicz, T. Jiang, Impacts of 1.5 °C and 2 °C global warming on winter snow depth in Central Asia, Sci. Total Environ. 651 (2019) 2866–2873. https://doi.org/10.1016/j.scitotenv.2018.10.126.
  • [58] L.A. Blanchard, D. Hancu, E.J. Beckman, J.F. Brennecke, Green processing using ionic liquids and CO2, Nature. 399 (1999) 28–29. https://doi.org/Doi 10.1038/19887.
  • [59] Q. Huang, G. Jing, X. Zhou, B. Lv, Z. Zhou, A novel biphasic solvent of amino-functionalized ionic liquid for CO2 capture: High efficiency and regenerability, J. CO2 Util. 25 (2018) 22–30. https://doi.org/10.1016/j.jcou.2018.03.001.
  • [60] B. Lv, G. Jing, Y. Qian, Z. Zhou, An efficient absorbent of amine-based amino acid-functionalized ionic liquids for CO2 capture: High capacity and regeneration ability, Chem. Eng. J. 289 (2016) 212–218. https://doi.org/10.1016/j.cej.2015.12.096.
  • [61] M.A.R. Martins, G. Sharma, S.P. Pinho, R.L. Gardas, J.A.P. Coutinho, P.J. Carvalho, Selection and characterization of non-ideal ionic liquids mixtures to be used in CO2 capture, Fluid Phase Equilib. 518 (2020) 112621. https://doi.org/10.1016/j.fluid.2020.112621.
  • [62] S.N.V.K. Aki, B.R. Mellein, E.M. Saurer, J.F. Brennecke, High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids, J. Phys. Chemi. 52 (2004) 20355–20365. https://doi.org/10.1021/jp046895+.
  • [63] P. Sharma, S. Do Park, K.T. Park, S.C. Nam, S.K. Jeong, Y. Il Yoon, I.H. Baek, Solubility of carbon dioxide in amine-functionalized ionic liquids: Role of the anions, Chem. Eng. J. 193–194 (2012) 267–275. https://doi.org/10.1016/j.cej.2012.04.015.
  • [64] V. Ramkumar, R.L. Gardas, Thermophysical Properties and Carbon Dioxide Absorption Studies of Guanidinium-Based Carboxylate Ionic Liquids, J. Chem. Eng. Data. 64 (2019) 4844–4855. https://doi.org/10.1021/acs.jced.9b00377.
  • [65] G. Huang, A.P. Isfahani, A. Muchtar, K. Sakurai, B.B. Shrestha, D. Qin, D. Yamaguchi, E. Sivaniah, B. Ghalei, Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture, J. Memb. Sci. 565 (2018) 370–379. https://doi.org/10.1016/j.memsci.2018.08.026.
  • [66] H. Ren, X. Wang, S. Lian, Y. Zhang, E. Duan, Formation mechanisms of Caprolactam-tetraalkyl ammonium halide deep eutectic and its hydrate, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 211 (2019) 189–194. https://doi.org/10.1016/j.saa.2018.12.005.
  • [67] A. Zgoła-Grześkowiak, T. Grześkowiak, Dispersive liquid-liquid microextraction, TrAC - Trends Anal. Chem. 30 (2011) 1382–1399. https://doi.org/10.1016/j.trac.2011.04.014.
  • [68] M. Fuerhacker, T.M. Haile, D. Kogelnig, A. Stojanovic, B. Keppler, Application of ionic liquids for the removal of heavy metals from wastewater and activated sludge, Water Sci. Technol. 65 (2012) 1765–1773. https://doi.org/10.2166/wst.2012.907.
  • [69] T. Arfin, N. Varshney, B. Singh, Ionic Liquid Modified Activated Carbon for the Treatment of Textile Wastewater, in: M. Naushad, E. Lichtfouse (Eds.), Green Mater. Wastewater Treat., Springer Nature Switzerland AG 2020, 2020: pp. 257–275. https://doi.org/10.1007/978-3-030-17724-9_11.
  • [70] T. Tangatova, T. Bayanduyeva, E. Ernstovna, S. Adamovich, Intensification of biological wastewater treatment using ionic liquids, in: MATEC Web Conf., 2018: p. 01017. https://doi.org/10.1051/matecconf/201821201017.
  • [71] J. Ma, X. Hong, Application of ionic liquids in organic pollutants control, J. Environ. Manage. 99 (2012) 104–109. https://doi.org/10.1016/j.jenvman.2012.01.013.
  • [72] C. Florindo, F. Lima, L.C. Branco, I.M. Marrucho, Hydrophobic Deep Eutectic Solvents: A Circular Approach to Purify Water Contaminated with Ciprofloxacin, ACS Sustain. Chem. Eng. 7 (2019) 14739–14746. https://doi.org/10.1021/acssuschemeng.9b02658.
  • [73] O.G. Sas, M. Castro, Á. Domínguez, B. González, Removing phenolic pollutants using Deep Eutectic Solvents, Sep. Purif. Technol. 227 (2019). https://doi.org/10.1016/j.seppur.2019.115703.
  • [74] A.C. da Silva, G. Mafra, D. Spudeit, J. Merib, E. Carasek, Magnetic ionic liquids as an efficient tool for the multiresidue screening of organic contaminants in river water samples, Sep. Sci. Plus. 2 (2019) 51–58. https://doi.org/10.1002/sscp.201900010.
  • [75] W. Liu, J. Quan, Z. Hu, Detection of Organophosphorus Pesticides in Wheat by Ionic Liquid-Based Dispersive Liquid-Liquid Microextraction Combined with HPLC, J. Anal. Methods Chem. 2018 (2018). https://doi.org/10.1155/2018/8916393.
  • [76] T.M. Trtić-Petrović, A. Dimitrijević, Vortex-assisted ionic liquid based liquid-liquid microextraction of selected pesticides from a manufacturing wastewater sample, Cent. Eur. J. Chem. 12 (2014) 98–106. https://doi.org/10.2478/s11532-013-0352-y.
  • [77] W. Wilms, M. Wozniak-Karczewska, A. Syguda, M. Niemczak, Ł. Ławniczak, J. Pernak, R.D. Rogers, Ł. Chrzanowski, Herbicidal ionic liquids: A promising future for old herbicides? Review on synthesis, toxicity, biodegradation, and efficacy studies, J. Agric. Food Chem. 68 (2020) 10456–10488. https://doi.org/10.1021/acs.jafc.0c02894.
  • [78] P. Isosaari, V. Srivastava, M. Sillanpää, Ionic liquid-based water treatment technologies for organic pollutants: Current status and future prospects of ionic liquid mediated technologies, Sci. Total Environ. 690 (2019) 604–619. https://doi.org/10.1016/j.scitotenv.2019.06.421.
  • [79] S.P.M. Ventura, F.A. E Silva, M. V. Quental, D. Mondal, M.G. Freire, J.A.P. Coutinho, Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends, Chem. Rev. 117 (2017) 6984–7052. https://doi.org/10.1021/acs.chemrev.6b00550.
  • [80] S. Carda–Broch, A. Berthod, D.W. Armstrong, Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid, Anal. Bioanal. Chem. 375 (2003) 191–199. https://doi.org/10.1007/s00216-002-1684-1.
  • [81] S. V. Smirnova, I.I. Torocheshnikova, A.A. Formanovsky, I. V. Pletnev, Solvent extraction of amino acids into a room temperature ionic liquid with dicyclohexano-18-crown-6, Anal. Bioanal. Chem. 378 (2004) 1369–1375. https://doi.org/10.1007/s00216-003-2398-8.
  • [82] A. Seduraman, P. Wu, M. Klähn, Extraction of tryptophan with ionic liquids studied with molecular dynamics simulations, J. Phys. Chem. B. 116 (2012) 296–304. https://doi.org/10.1021/jp206748z.
  • [83] L. Huaxi, L. Zhuo, Y. Jingmei, L. Changping, C. Yansheng, L. Qingshan, Z. Xiuling, W.B. Urs, Liquid–liquid extraction process of amino acids by a new amide-based functionalized ionic liquid, Green Chem. 14 (2012) 1721–1727. https://doi.org/10.1039/c2gc16560k.
  • [84] F. Tang, Q. Zhang, D. Ren, Z. Nie, Q. Liu, S. Yao, Functional amino acid ionic liquids as solvent and selector in chiral extraction, J. Chromatogr. A. 1217 (2010) 4669–4674. https://doi.org/10.1016/j.chroma.2010.05.013.
  • [85] Y.P. Tzeng, C.W. Shen, Y. Tiing, Liquid-liquid extraction of lysozyme using a dye-modified ionic liquid, J. Chromatogr. A. 1193 (2008) 1–6. https://doi.org/10.1016/j.chroma.2008.02.118.
  • [86] S.P.M. Ventura, C.M.S.S. Neves, M.G. Freire, I.M. Marrucho, J. Oliveira, J.A.P. Coutinho, Evaluation of anion influence on the formation and extraction capacity of ionic-liquid-based aqueous biphasic systems, J. Phys. Chem. B. 113 (2009) 9304–9310. https://doi.org/10.1021/jp903286d.
  • [87] H. Passos, A.R. Ferreira, A.F.M. Cláudio, J.A.P. Coutinho, M.G. Freire, Characterization of aqueous biphasic systems composed of ionic liquids and a citrate-based biodegradable salt, Biochem. Eng. J. 67 (2012) 68–76. https://doi.org/10.1016/j.bej.2012.05.004.
  • [88] V.P. Priyanka, A. Basaiahgari, R.L. Gardas, Enhanced partitioning of tryptophan in aqueous biphasic systems formed by benzyltrialkylammonium based ionic liquids: Evaluation of thermophysical and phase behavior, J. Mol. Liq. 247 (2017) 207–214. https://doi.org/10.1016/j.molliq.2017.09.111.
  • [89] Z. Du, Y.L. Yu, J.H. Wang, Extraction of proteins from biological fluids by use of an ionic liquid/aqueous two-phase system, Chem. - A Eur. J. 13 (2007) 2130–2137. https://doi.org/10.1002/chem.200601234.
  • [90] S.Y. Lee, I. Khoiroh, C.W. Ooi, T.C. Ling, P.L. Show, Recent Advances in Protein Extraction Using Ionic Liquid-based Aqueous Two-phase Systems, Sep. Purif. Rev. 46 (2017) 291–304. https://doi.org/10.1080/15422119.2017.1279628.
  • [91] A. Basaiahgari, R.L. Gardas, Ionic liquid–based aqueous biphasic systems as sustainable extraction and separation techniques, Curr. Opin. Green Sustain. Chem. 27 (2021) 100423. https://doi.org/10.1016/j.cogsc.2020.100423.
  • [92] H. Zhao, DNA stability in ionic liquids and deep eutectic solvents, J. Chem. Technol. Biotechnol. 90 (2015) 19–25. https://doi.org/10.1002/jctb.4511.
  • [93] Y. Shi, Y.L. Liu, P.Y. Lai, M.C. Tseng, M.J. Tseng, Y. Li, Y.H. Chu, Ionic liquids promote PCR amplification of DNA, Chem. Commun. 48 (2012) 5325–5327. https://doi.org/10.1039/c2cc31740k.
  • [94] K.D. Clark, O. Nacham, H. Yu, T. Li, M.M. Yamsek, D.R. Ronning, J.L. Anderson, Extraction of DNA by magnetic ionic liquids: Tunable solvents for rapid and selective DNA analysis, Anal. Chem. 87 (2015) 1552–1559. https://doi.org/10.1021/ac504260t.
  • [95] C. Zhu, M. Varona, J.L. Anderson, Magnetic Ionic Liquids as Solvents for RNA Extraction and Preservation, ACS Omega. 5 (2020) 11151–11159. https://doi.org/10.1021/acsomega.0c01098.
  • [96] J. Li, Ionic Liquids in Lipid Analysis, in: X. Xu, Z. Guo, L.-Z. Cheong (Eds.), Ion. Liq. Lipid Process. Anal. Oppor. Challenges, Academic Press, 2016: pp. 423–458. https://doi.org/10.1016/B978-1-63067-047-4.00014-3.
  • [97] L.Z. Cheong, Z. Guo, Z. Yang, S.C. Chua, X. Xu, Extraction and enrichment of n-3 polyunsaturated fatty acids and ethyl esters through reversible π-π Complexation with aromatic rings containing ionic liquids, J. Agric. Food Chem. 59 (2011) 8961–8967. https://doi.org/10.1021/jf202043w.
  • [98] K. Bica, P. Gaertner, R.D. Rogers, Ionic liquids and fragrances – direct isolation of orange essential oil, Green Chem. 13 (2011) 1997–1999. https://doi.org/10.1039/c1gc15237h.
  • [99] R. Liang, Z. Bao, B. Su, H. Xing, Q. Yang, Y. Yang, Q. Ren, Feasibility of ionic liquids as extractants for selective separation of vitamin D3 and tachysterol3 by solvent extraction, J. Agric. Food Chem. 61 (2013) 3479–3487. https://doi.org/10.1021/jf305558b.
  • [100] S.P.F. Costa, A.M.O. Azevedo, P.C.A.G. Pinto, M.L.M.F.S. Saraiva, Environmental Impact of Ionic Liquids: Recent Advances in (Eco)toxicology and (Bio)degradability, ChemSusChem. 10 (2017) 2321–2347. https://doi.org/10.1002/cssc.201700261.
  • [101] J. Flieger, M. Flieger, Ionic liquids toxicity—benefits and threats, Int. J. Mol. Sci. 21 (2020) 1–41. https://doi.org/10.3390/ijms21176267.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9adc5700-53a7-4633-87c1-fcf83c5f952c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.