PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational Intelligence for Life Sciences

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Computational Intelligence (CI) is a computer science discipline encompassing the theory, design, development and application of biologically and linguistically derived computational paradigms. Traditionally, the main elements of CI are Evolutionary Computation, Swarm Intelligence, Fuzzy Logic, and Neural Networks. CI aims at proposing new algorithms able to solve complex computational problems by taking inspiration from natural phenomena. In an intriguing turn of events, these nature-inspired methods have been widely adopted to investigate a plethora of problems related to nature itself. In this paper we present a variety of CI methods applied to three problems in life sciences, highlighting their effectiveness: we describe how protein folding can be faced by exploiting Genetic Programming, the inference of haplotypes can be tackled using Genetic Algorithms, and the estimation of biochemical kinetic parameters can be performed by means of Swarm Intelligence. We show that CI methods can generate very high quality solutions, providing a sound methodology to solve complex optimization problems in life sciences.
Wydawca
Rocznik
Strony
57--80
Opis fizyczny
Bibliogr. 107 poz., rys., tab., wykr.
Twórcy
  • Department of Informatics, University of Milano - Bicocca, Milano, Italy
autor
  • Department of Informatics, University of Milano - Bicocca, Milano, Italy
  • Department of Informatics, University of Milano - Bicocca, Milano, Italy
  • Department of Informatics, University of Milano - Bicocca, Milano, Italy
  • NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, Lisboa, Portugal
  • NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, Lisboa, Portugal
  • Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
  • SYSBIO.IT Centre of Systems Biology, Milano, Italy
  • Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, PA, USA
  • GSSI, Gran Sasso Science Institute, INFN, L’Aquila, Italy
  • Department of Radiology, University of Cambridge, Cambridge, UK
  • Cancer Research UK Cambridge Centre, Cambridge, UK
  • Department of Haematology, University of Cambridge, Cambridge, UK
  • Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
Bibliografia
  • [1] Turing AM. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B, 1952. 237(641):37-72.
  • [2] von Neumann J, Burks AW. Theory of self-reproducing automata. University of Illinois Press, Urbana, IL, USA, 1966.
  • [3] Rosenblatt F. The perceptron, a perceiving and recognizing automaton (Project Para). Cornell Aeronautical Laboratory, 1957.
  • [4] Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning. The MIT Press, Cambridge, MA, USA, 1 edition, 2016. URL http://www.deeplearningbook.org.
  • [5] Darwin C. The Origin of Species by means of Natural Selection; or, the Preservation of Favoured Races in the Struggle for Life. John Murray, London, UK, 6th edition, 1872.
  • [6] Holland JH. Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, MI, USA, 1975.
  • [7] Koza J. Genetic Programming: On the Programming of Computers by means of Natural Selection. The MIT Press, Cambridge, MA, USA, 1992. ISBN:0-262-11170-5.
  • [8] Kennedy J, Eberhart R. Particle swarm optimization. In: Proc. Int. Conf. Neural Networks, volume 4. IEEE, 1995 pp. 1942-1948. doi:10.1109/ICNN.1995.488968.
  • [9] Shi Y, Eberhart RC. Parameter selection in particle swarm optimization. In: Porto VW, Saravanan N, Waagen D, Eiben AE (eds.), Evolutionary Programming VII, volume 1447 of LNCS. Springer-Verlag, 1998 pp. 591-600. doi:10.1007/BFb0040810.
  • [10] Dorigo M, Birattari M. Ant colony optimization. In: Encyclopedia of Machine Learning, pp. 36-39. Springer, 2011. ISSN:2229-5518.
  • [11] Pham DT, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M. The bees algorithm-a novel tool for complex optimisation problems. In: Intelligent Production Machines and Systems, Elsevier, 2006 pp. 454-459. URL https://doi.org/10.1016/B978-008045157-2/50081-X.
  • [12] Nelson DL, Cox MM. Lehninger Principles of Biochemistry. WH Freeman & Company, New York, NY, USA, 4th edition, 2004. ISBN:0-7167-4339-6.
  • [13] Ruberto S, Vanneschi L, Castelli M. Genetic programming with semantic equivalence classes. Swarm Evol. Comput., 2019. 44:453-469. URL https://doi.org/10.1016/j.swevo.2018.06.001.
  • [14] Tangherloni A, Spolaor S, Rundo L, Nobile MS, Cazzaniga P, Mauri G, Liò P, Merelli I, Besozzi D. GenHap: a novel computational method based on genetic algorithms for haplotype assembly. BMC Bioinform., 2019. 20(Suppl 4):172. URL https://doi.org/10.1186/s12859-019-2691-y.
  • [15] Tangherloni A, Rundo L, Spolaor S, Nobile MS, Merelli I, Besozzi D, Mauri G, Cazzaniga P, Liò P. High Performance Computing for Haplotyping: models and Platforms. In: Aldinucci M, Padovani L, Torquati M (eds.), Euro-Par 2018 Workshops, volume 11339 of LNCS. Springer, 2019 p. 650-661. doi:10.1007/978-3-030-10549-5_51.
  • [16] Levy S, Sutton G, Ng P, Feuk L, Halpern A, Walenz B, Axelrod N, Huang J, Kirkness E, Denisov G, et al. The diploid genome sequence of an individual human. PLoS Biol., 2007. 5(10):e254. doi:10.1371/journal.pbio.0050254.
  • [17] Nobile MS, Pasi G, Cazzaniga P, Besozzi D, Colombo R, Mauri G. Proactive particles in swarm optimization:a self-tuning algorithm based on fuzzy logic. In: Proc. Int. Conf. Fuzzy Systems. IEEE, 2015 pp. 1-8. doi:10.1109/FUZZ-IEEE.2015.7337957.
  • [18] Tangherloni A, Rundo L, Nobile MS. Proactive Particles in Swarm Optimization: a settings-free algorithm for real-parameter single objective optimization problems. In: Proc. Congr. Evolutionary Computation. IEEE, 2017 pp. 1940-1947. doi:10.1109/CEC.2017.7969538.
  • [19] Nobile MS, Cazzaniga P, Besozzi D, Colombo R, Mauri G, Pasi G. Fuzzy Self-Tuning PSO: A settings-free algorithm for global optimization. Swarm Evol. Comput., 2018. 39:70-85. URL https://doi.org/10.1016/j.swevo.2017.09.001.
  • [20] Spolaor S, Tangherloni A, Rundo L, Nobile MS, Cazzaniga P. Reboot strategies in particle swarm optimization and their impact on parameter estimation of biochemical systems. In: Proc. Conf. Computational Intelligence in Bioinformatics and Computational Biology. IEEE, 2017 pp. 1-8. doi:10.1109/CIBCB.2017.8058550.
  • [21] Vanneschi L, Castelli M, Silva S. A survey of semantic methods in genetic programming. Genet. Program. Evolvable Mach., 2014. 15(2):195-214. doi:10.1007/s10710-013-9210-0.
  • [22] Castelli M, Silva S, Vanneschi L. A C++ framework for geometric semantic genetic programming. Genet. Program. Evolvable Mach., 2015. 16(1):73-81. doi:10.1007/s10710-014-9218-0.
  • [23] Castelli M, Trujillo L, Vanneschi L, Silva S, Z-Flores E, Legrand P. Geometric semantic genetic programming with local search. In: Proc. Annual Conf. Genetic and Evolutionary Computation, GECCO ’15. ACM, 2015 pp. 999-1006. doi:10.1145/2739480.2754795.
  • [24] Popovic A, Castelli M, Vanneschi L. Predicting burned areas of forest fires: an artificial intelligence approach. Fire Ecol., 2015. 11(1):106-118. doi:10.4996/fireecology.1101106.
  • [25] Castelli M, Castaldi D, Giordani I, Silva S, Vanneschi L, Archetti F, Maccagnola D. An efficient implementation of geometric semantic genetic programming for anticoagulation level prediction in pharmacogenetics. In: Proc. Portuguese Conf. Artificial Intelligence. Springer, 2013 pp. 78-89. doi:10.1007/978-3-642-40669-0_8.
  • [26] Hajek P, Henriques R, Castelli M, Vanneschi L. Forecasting performance of regional innovation systems using semantic-based genetic programming with local search optimizer. Comput. Oper. Res., 2019. 106:179-190. URL https://doi.org/10.1016/j.cor.2018.02.001.
  • [27] Castelli M, Vanneschi L, De Felice M. Forecasting short-term electricity consumption using a semantics-based genetic programming framework: the South Italy case. Energy Econom., 2015. 47:37-41. URL https://doi.org/10.1016/j.eneco.2014.10.009.
  • [28] Enríquez-Zárate J, Trujillo L, de Lara S, Castelli M, Z-Flores EZ, Muñoz L, Popovič A. Automatic modeling of a gas turbine using genetic programming: An experimental study. Applied Soft Computing, 2017. 50:212-222. URL https://doi.org/10.1016/j.asoc.2016.11.019.
  • [29] Castelli M, Vanneschi L, Popovič A. Parameter evaluation of geometric semantic genetic programming in pharmacokinetics. International Journal of Bio-Inspired Computation, 2016. 8(1):42-50. URL https://doi.org/10.1504/IJBIC.2016.074634.
  • [30] Moraglio A, Krawiec K, Johnson CG. Geometric semantic genetic programming. In: International Conference on Parallel Problem Solving from Nature. Springer, 2012 pp. 21-31. doi:10.1007/978-3-642-32937-1_3.
  • [31] Vanneschi L, Castelli M, Manzoni L, Silva S. A new implementation of geometric semantic GP and its application to problems in pharmacokinetics. In: European Conference on Genetic Programming. Springer, 2013 pp. 205-216. doi:10.1007/978-3-642-37207-0_18.
  • [32] Vanneschi L, Castelli M, Silva S. Measuring bloat, overfitting and functional complexity in genetic programming. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation. ACM, 2010 pp. 877-884. doi:10.1145/1830483.1830643.
  • [33] Castelli M, Manzoni L, Silva S, Vanneschi L. A comparison of the generalization ability of different genetic programming frameworks. In: IEEE Congress on Evolutionary Computation. IEEE, 2010 pp. 1-8. doi:10.1109/CEC.2010.5585925.
  • [34] Castelli M, Manzoni L, Silva S, Vanneschi L. A quantitative study of learning and generalization in genetic programming. In: European Conference on Genetic Programming. Springer, 2011 pp. 25-36. doi:10.1007/978-3-642-20407-4_3.
  • [35] Castelli M, Vanneschi L, Silva S. Semantic search-based genetic programming and the effect of intron deletion. IEEE Transactions on Cybernetics, 2014. 44(1):103-113. doi:10.1109/TSMCC.2013.2247754.
  • [36] Gonçalves I, Silva S, Fonseca CM, Castelli M. Unsure when to stop?: ask your semantic neighbors. In: Proceedings of the Genetic and Evolutionary Computation Conference. ACM, 2017 pp. 929-936. doi:10.1145/3071178.3071328.
  • [37] Castelli M, Trujillo L, Vanneschi L, Popovič A. Prediction of relative position of CT slices using a computational intelligence system. Applied Soft Computing, 2016. 46:537-542. URL https://doi.org/10.1016/j.asoc.2015.09.021.
  • [38] Vanneschi L, Castelli M, Costa E, Re A, Vaz H, Lobo V, Urbano P. Improving maritime awareness with semantic genetic programming and linear scaling: Prediction of vessels position based on AIS data. In: Mora AM, Squillero G (eds.), Applications of Evolutionary Computation. Springer International Publishing, Cham, 2015 pp. 732-744. doi:10.1007/978-3-319-16549-3_59.
  • [39] Gonçalves I, Silva S, Fonseca CM, Castelli M. Arbitrarily close alignments in the error space: A geometric semantic genetic programming approach. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion. ACM, 2016 pp. 99-100. doi:10.1145/2908961.2908988.
  • [40] Castelli M, Manzoni L, Vanneschi L, Silva S, Popovič A. Self-tuning geometric semantic genetic programming. Genetic Programming and Evolvable Machines, 2016. 17(1):55-74. doi:10.1007/s10710-015-9251-7.
  • [41] Ruberto S, Vanneschi L, Castelli M, Silva S. ESAGP - A semantic GP framework based on alignment in the error space. In: Nicolau M, Krawiec K, Heywood MI, Castelli M, García-Sánchez P, Merelo JJ, Rivas Santos VM, Sim K (eds.), Genetic Programming. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014 pp. 150-161. doi:10.1007/978-3-662-44303-3_13.
  • [42] Castelli M, Henriques R, Vanneschi L. A geometric semantic genetic programming system for the electoral redistricting problem. Neurocomputing, 2015. 154:200-207. URL https://doi.org/10.1016/j.neucom.2014.12.003.
  • [43] Castelli M, Trujillo L, Vanneschi L. Energy consumption forecasting using semantic-based genetic programming with local search optimizer. Comput. Intell. Neurosci., 2015. 2015. Article ID 971908. URL http://dx.doi.org/10.1155/2015/971908.
  • [44] Castelli M, Vanneschi L, Manzoni L, Popovič A. Semantic genetic programming for fast and accurate data knowledge discovery. Swarm Evol. Comput., 2016. 26:1-7. URL https://doi.org/10.1016/j.swevo.2015.07.001.
  • [45] Castelli M, Silva S, Vanneschi L, Cabral A, Vasconcelos MJ, Catarino L, Carreiras JM. Land cover/land use multiclass classification using GP with geometric semantic operators. In: Proc. Eur. Conf. Applications of Evolutionary Computation. Springer, 2013 pp. 334-343. URL doi.org/10.1007/978-3-642-37192-9_34.
  • [46] Castelli M, Vanneschi L, Silva S, Ruberto S. How to exploit alignment in the error space: two different GP models. In: Genetic Programming Theory and Practice XII, pp. 133-148. Springer, 2015. doi:10.1007/978-3-319-16030-6_8.
  • [47] Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1 edition, 1989. ISBN:0201157675.
  • [48] Rundo L, Tangherloni A, Nobile MS, Militello C, Besozzi D, Mauri G, Cazzaniga P. MedGA: a novel evolutionary method for image enhancement in medical imaging systems. Expert Syst. Appl., 2019. 119:387-399. URL https://doi.org/10.1016/j.eswa.2018.11.013.
  • [49] Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet., 2005. 6(2):95. doi:10.1038/nrg1521.
  • [50] Kuleshov V, Xie D, Chen R, Pushkarev D, Ma Z, Blauwkamp T, Kertesz M, Snyder M. Wholegenome haplotyping using long reads and statistical methods. Nat. Biotech., 2014. 32(3):261-266. doi:10.1038/nbt.2833.
  • [51] Snyder M, Adey A, Kitzman J, Shendure J. Haplotype-resolved genome sequencing: experimental methods and applications. Nat. Rev. Genet., 2015. 16(6):344-358. doi:10.1038/nrg3903.
  • [52] Patterson M, Marschall T, Pisanti N, Van Iersel L, Stougie L, Klau GW, Schönhuth A. WhatsHap: weighted haplotype assembly for future-generation sequencing reads. J. Comput. Biol., 2015. 22(6):498-509. doi:10.1089/cmb.2014.0157.
  • [53] Wang R, Wu L, Li Z, Zhang X. Haplotype reconstruction from SNP fragments by minimum error correction. Bioinformatics, 2005. 21(10):2456-2462. doi:10.1093/bioinformatics/bti352.
  • [54] Lippert R, Schwartz R, Lancia G, Istrail S. Algorithmic strategies for the single nucleotide polymorphism haplotype assembly problem. Brief. Bioinform., 2002. 3(1):23-31. doi:10.1093/bib/3.1.23.
  • [55] Greenberg H, Hart W, Lancia G. Opportunities for combinatorial optimization in computational biology. INFORMS J. Comput., 2004. 16(3):211-231. URL https://doi.org/10.1287/ijoc.1040.0073.
  • [56] Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res., 1998. 8(3):175-185. doi: 10.1101/gr.8.3.175.
  • [57] Zhang K, Calabrese P, Nordborg M, Sun F. Haplotype block structure and its applications to association studies: power and study designs. Am. J. Hum. Genet., 2002. 71(6):1386-1394. doi:10.1086/344780.
  • [58] Rhoads A, Au K. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics, 2015. 13(5):278-289. doi:10.1016/j.gpb.2015.08.002.
  • [59] Jain M, Fiddes I, Miga K, Olsen H, Paten B, Akeson M. Improved data analysis for the MinION nanopore sequencer. Nat. Methods, 2015. 12(4):351. doi:10.1038/nmeth.3290.
  • [60] Choi Y, Chan AP, Kirkness E, Telenti A, Schork NJ. Comparison of phasing strategies for whole human genomes. PLoS Genet., 2018. 14(4):e1007308. doi:10.1371/journal.pgen.1007308.
  • [61] Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, Swerdlow H, Turner DJ. A large genome center’s improvements to the Illumina sequencing system. Nat. Methods, 2008. 5(12):1005. doi:10.1038/nmeth.1270.
  • [62] Nachman MW. Single nucleotide polymorphisms and recombination rate in humans. Trends Genet., 2001. 17(9):481-485. doi:10.1016/S0168-9525(01)02409-X.
  • [63] Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, et al. The structure of haplotype blocks in the human genome. Science, 2002. 296(5576):2225-2229. doi:10.1126/science.1069424.
  • [64] Hölldobler B, Wilson EO. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies. WW Norton & Company, New York, NY, USA, 2008. ISBN: 10:0393067041, 13:978-0393067040.
  • [65] Seeley TD. The honey bee colony as a superorganism. Am. Scientist, 1989. 77(6):546-553. URL https://www.jstor.org/stable/27856005.
  • [66] Dorigo M, Bonabeau E, Theraulaz G. Ant algorithms and stigmergy. Future Gener. Comput. Syst., 2000. 16(8):851-871. URL https://doi.org/10.1016/S0167-739X(00)00042-X.
  • [67] Theraulaz G, Bonabeau E. A brief history of stigmergy. Artif. Life, 1999. 5(2):97-116. doi:10.1162/106454699568700.
  • [68] Gutjahr WJ. ACO algorithms with guaranteed convergence to the optimal solution. Inf. Proc. Lett., 2002. 82(3):145-153. URL https://doi.org/10.1016/S0020-0190(01)00258-7.
  • [69] Stützle T, Dorigo M. ACO algorithms for the traveling salesman problem. In: Miettinen K, Neittaanmäki P, Mäkelä MM, Periaux J (eds.), Evolutionary Algorithms in Engineering and Computer Science, pp. 163-183. Wiley, 1999.
  • [70] Li Y, Xul Z. An ant colony optimization heuristic for solving maximum independent set problems. In: Proc. Fifth Int. Conf. Computational Intelligence and Multimedia Applications. IEEE, 2003 pp. 206-211. doi:10.1109/ICCIMA.2003.1238126.
  • [71] Socha K, Dorigo M. Ant colony optimization for continuous domains. Eur. J. Oper. Res., 2008. 185(3):1155-1173. URL https://doi.org/10.1016/j.ejor.2006.06.046.
  • [72] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim., 2007. 39(3):459-471. doi:10.1007/s10898-007-9149-x.
  • [73] Karaboga D, Akay B. A comparative study of artificial bee colony algorithm. Appl. Math. Comput., 2009. 214(1):108-132. URL https://doi.org/10.1016/j.amc.2009.03.090.
  • [74] Cagnoni S, Vanneschi L, Azzini A, Tettamanzi AGB. A critical assessment of some variants of particle swarm optimization. In: et al MG (ed.), Proc. Workshops Applications of Evolutionary Computing, LNCS. 2008 pp. 565-574. doi:10.1007/978-3-540-78761-7_62.
  • [75] Arumugam MS, Rao MVC. On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems. J. Appl. Soft Comput., 2008. 8(1):324-336. URL https://doi.org/10.1016/j.asoc.2007.01.010.
  • [76] Valle YD, Venayagamoorthy G, Mohagheghi S, Hernandez J, Harley R. Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems. IEEE Transactions on Evolutionary Computation, 2008. 12(2):171-195. doi:10.1109/TEVC.2007.896686.
  • [77] Rundo L, Tangherloni A, Militello C, Gilardi MC, Mauri G. Multimodal medical image registration using particle swarm optimization: a review. In: Proc. Symp. Series Computational Intelligence. IEEE, 2016 pp. 1-8. doi:10.1109/SSCI.2016.7850261.
  • [78] Chatterjee A, Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput. Oper. Res., 2006. 33(3):859-871. URL https://doi.org/10.1016/j.cor.2004.08.012.
  • [79] Dräger A, Kronfeld M, Ziller M, Supper J, Planatscher H, Magnus J. Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies. BMC Syst. Biol., 2009. 3:5. URL https://doi.org/10.1186/1752-0509-3-5.
  • [80] Shi Y, Eberhart R. Fuzzy adaptive Particle Swarm Optimization. In: Proc. Congr. Evolutionary Computation, volume 1. IEEE, 2001 pp. 101-106. doi:10.1109/CEC.2001.934377.
  • [81] Abdelbar AM, Abdelshahid S, Wunsch DC. Fuzzy PSO: a generalization of particle swarm optimization. In: Proc. Int. Joint Conf. Neural Networks, volume 2. IEEE, 2005 pp. 1086-1091. doi:10.1109/IJCNN.2005.1556004.
  • [82] Abraham A, Liu H. Turbulent particle swarm optimization using fuzzy parameter tuning. In: Abraham A, Hassanien A, Siarry P, Engelbrecht A (eds.), Foundations of Computational Intelligence, volume 3, pp. 291-312. Springer, Berlin, Germany, 2009. doi:10.1007/978-3-642-01085-9_10.
  • [83] Poli R, Kennedy J, Blackwell T. Particle swarm optimization. Swarm Intell., 2007. 1(1):33-57.
  • [84] Nobile MS, Tangherloni A, Rundo L, Spolaor S, Besozzi D, Mauri G, Cazzaniga P. Computational intelligence for parameter estimation of biochemical systems. In: 2018 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2018 pp. 1-8. doi:10.1109/cec.2018.8477873.
  • [85] Nobile MS, Besozzi D, Cazzaniga P, Mauri G, Pescini D. Estimating reaction constants in stochastic biological systems with a multi-swarm PSO running on GPUs. In: Soule T (ed.), Proc. 14th Int. Conf. Genetic and Evolutionary Computation Conference Companion. ACM, 2012 pp. 1421-1422. doi:10.1145/2330784.2330964.
  • [86] Kitano H. Systems biology: a brief overview. Science, 2002. 295(5560):1662-1664. doi:10.1126/science.1069492.
  • [87] Cazzaniga P, Damiani C, Besozzi D, Colombo R, Nobile MS, Gaglio D, Pescini D, Molinari S, Mauri G, Alberghina L, et al. Computational strategies for a system-level understanding of metabolism. Metabolites, 2014. 4(4):1034-1087. doi:10.3390/metabo4041034.
  • [88] Moles C, Mendes P, Banga J. Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res., 2003. 13(11):2467-2474. doi:10.1101/gr.1262503.
  • [89] Besozzi D. Reaction-based models of biochemical networks. In: Beckmann A, Bienvenu L, Jonoska N (eds.), Pursuit of the Universal. Proc. 12th Conf. Computability in Europe, CiE 2016, number 9709 in LNCS. Springer International Publishing, Switzerland, 2016 pp. 24-34. doi:10.1007/978-3-319-40189-8_3.
  • [90] Chellaboina V, Bhat S, Haddad W, Bernstein D. Modeling and analysis of mass-action kinetics. IEEE Control Syst., 2009. 29(4):60-78. doi:10.1109/MCS.2009.932926.
  • [91] Nobile MS, Cazzaniga P, Tangherloni A, Besozzi D. Graphics processing units in bioinformatics, computational biology and systems biology. Brief. Bioinform., 2017. 18(5):870-885. doi:10.1093/bib/bbw058.
  • [92] Nobile MS, Besozzi D, Cazzaniga P, Mauri G, Pescini D. A GPU-based multi-swarm PSO method for parameter estimation in stochastic biological systems exploiting discrete-time target series. In: Giacobini M, Vanneschi L, Bush W (eds.), Proc. 7th Eur. Conf. Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, volume 7246 of LNCS. Springer-Verlag, 2012 pp. 74-85. doi:10.1007/978-3-642-29066-4_7.
  • [93] Nobile MS, Besozzi D, Cazzaniga P, Mauri G. GPU-accelerated simulations of mass-action kinetics models with cupSODA. J. Supercomput., 2014. 69(1):17-24. doi:10.1007/s11227-014-1208-8.
  • [94] Nobile MS, Besozzi D, Cazzaniga P, Mauri G, Pescini D. cupSODA: a CUDA-powered simulator of mass-action kinetics. In: Malyshkin V (ed.), Proc. 12th Int. Conf. Parallel Computing Technologies, volume 7979 of LNCS, pp. 344-357. Springer, 2013. doi:10.1007/978-3-642-39958-9_32.
  • [95] Nobile MS, Tangherloni A, Besozzi D, Cazzaniga P. GPU-powered and settings-free parameter estimation of biochemical systems. In: Proc. Congr. Evolutionary Computation. IEEE, 2016 pp. 32-39. doi:10.1109/CEC.2016.7743775.
  • [96] García-Nieto J, Alba E. Restart particle swarm optimization with velocity modulation: a scalability test. Soft Comput., 2011. 15(11):2221-2232. doi:10.1007/s00500-010-0648-1.
  • [97] De Oca MAM, Stutzle T, Birattari M, Dorigo M. Frankenstein’s PSO: a composite particle swarm optimization algorithm. IEEE Trans. Evol. Comput., 2009. 13(5):1120-1132. doi:10.1109/TEVC.2009.2021465.
  • [98] Petre I, Mizera A, Hyder CL, Meinander A, Mikhailov A, Morimoto RI, Sistonen L, Eriksson JE, Back RJ. A simple mass-action model for the eukaryotic heat shock response and its mathematical validation. Nat. Comput., 2011. 10(1):595-612. doi:10.1007/s11047-010-9216-y.
  • [99] Harris LA, Nobile MS, Pino JC, Lubbock AL, Besozzi D, Mauri G, Cazzaniga P, Lopez CF. GPU-powered model analysis with PySB/cupSODA. Bioinformatics, 2017. 33(21):3492-3494. doi:0.1093/bioinformatics/btx420.
  • [100] Simon M. The Wasp that Brainwashed the Caterpillar: Evolution’s Most Unbelievable Solutions to Life’s Biggest Problems. Penguin Books, New York, NY, USA, 2016. ISBN-13:978-0143128687, 10:014312868X.
  • [101] Hölldobler B, Wilson EO. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies. W. W. Norton & Company, New York, NY, USA, 2008. ISBN-10:0393067041, 13:978-0393067040.
  • [102] Tautz J. The Buzz about Bees. Biology of a Superorganism. Springer-Verlag, Berlin Heidelberg, Germany, 2008. ISBN-10:9783540787273, 13:978-3540787273.
  • [103] Tangherloni A, Nobile MS, Cazzaniga P. GPU-powered bat algorithm for the parameter estimation of biochemical kinetic values. In: Proc. Conf. Computational Intelligence in Bioinformatics and Computational Biology. IEEE, 2016 pp. 1-6. doi:10.1109/CIBCB.2016.7758103.
  • [104] Ramazzotti D, Nobile MS, Cazzaniga P, Mauri G, Antoniotti M. Parallel implementation of efficient search schemes for the inference of cancer progression models. In: Proc. Conf. Computational Intelligence in Bioinformatics and Computational Biology. IEEE, 2016 pp. 1-6. doi:10.1109/CIBCB.2016.7758109.
  • [105] Tangherloni A, Nobile MS, Besozzi D, Mauri G, Cazzaniga P. LASSIE: simulating large-scale models of biochemical systems on GPUs. BMC Bioinform., 2017. 18(1):246. URL https://doi.org/10.1186/s12859-017-1666-0.
  • [106] Nobile MS, Cazzaniga P, Besozzi D, Pescini D, Mauri G. cuTauLeaping: A GPU-powered tau-leaping stochastic simulator for massive parallel analyses of biological systems. PLoS ONE, 2014. 9(3):e91963. URL https://doi.org/10.1371/journal.pone.0101858.
  • [107] Díaz-Manríquez A, Toscano G, Barron-Zambrano JH, Tello-Leal E. A review of surrogate assisted multiobjective evolutionary algorithms. Comput. Intell. Neurosci., 2016. 2016. URL http://dx.doi.org/10.1155/2016/9420460.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9adb8053-130e-4d56-853f-c827d1be2ca5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.