PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

All optical measurement of an unknown wideband microwave frequency

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel all optical measurement scheme is proposed to measure wideband microwave frequencies up to 30 GHz. The proposed method is based on a four-wave mixing (FWM) approach in a semiconductor optical amplifier (SOA) of both even order side-bands generated by an unknown microwave frequency modulating an optical carrier. The optical power of a generated FWM signal depends on frequency spacing between extracted side-bands. A mathematical relation is established between FWM power and frequency of an unknown signal. A calibration curve is drawn based on the mathematical relation which predicts the unknown frequency from power withdrawn after FWM.
Twórcy
autor
  • Department of Electronics Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, India, 826004
autor
  • Department of Electronics Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, India, 826004
autor
  • Department of Electronics Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, India, 826004
Bibliografia
  • 1. J.B.Y. Tusi, Microwave Receivers with Electronic Warfare Applications. New York: Wiley, 1986.
  • 2. J. Seeds and K.J. Williams, “Microwave photonics”, J. Lightw. Technol. 24, 4628–4641 (2006).
  • 3. D.B. Hunter, M.E. Parker, and J.L. Dexter, “Demonstration of a continuously variable true-time delay beam former using a multichannel chirped fibre grating”, IEEE Trans. Microw. Theory Tech. 54, 861–867 (2006).
  • 4. F. Zeng and J.P. Yao, “All-optical bandpass microwave filter based on an electro-optic phase modulator”, Opt. Express 12, 3814–3819 (2004).
  • 5. L.V.T. Nguyen and D.B. Hunter, “A photonic technique for microwave frequency measurement”, IEEE Photon. Technol. Lett. 18, 1188–1190 (2006).
  • 6. X. Zou and J.P. Yao, “An optical approach to microwave frequency measurement with adjustable measurement range and resolution”, IEEE Photon. Technol. Lett. 20, 1989–1991 (2008).
  • 7. H. Chi, X. Zou, and J.P. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring”, IEEE Photon. Technol. Lett. 20, 1249–1251 (2008).
  • 8. X. Zou, H. Chi, and J.P. Yao, “Microwave frequency measurement based on optical power monitoring using a complementary optical filter pair”, IEEE Trans. Microw. Theory Tech. 57, 505–511 (2009).
  • 9. H. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system”, IEEE Photon. Technol. Lett. 20, 1521–1523 (2008).
  • 10. H. Emami, N. Sarkhosh, L. Bui, and A. Mitchell, “Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform”, Opt. Express 16, 3707–13712 (2008).
  • 11. H. Chi and J. Yao, “Power distribution of phase-modulated microwave signals in a dispersive fiber-optic link”, IEEE Photon. Technol. Lett. 20, 315-317 (2008).
  • 12. X. Zhang, H. Chi, and X. Zhang, “Instantaneous microwave frequency measurement using an optical phase modulator”, IEEE Photon. Technol. Lett. 19, 422-424 (2009).
  • 13. A. Kumar, R.R. Singh, and V. Priye, “Instantaneous microwave frequency measurement using dual drive Mach-Zehnder Modulator”, IEEE Conf., pp. 1-4, ISBN: 978-1-4799-6499-4, 2014.
  • 14. M.J. Coupland, K.G. Hambleton, and C. Hilsum, “Measurement of amplification in a GaAs injection laser”, Phys. Lett. 7, 231–232 (1963).
  • 15. J.W. Crowe and R.M. Graig, Jr., “Small-signal amplification in GaAs lasers”, Appl. Phys. Lett. 4, 57 (1964).
  • 16. W.F. Kosonocky and R.H. Cornely, “Multilayer GaAs Injection laser”, IEEE J. Quantum Electron. 4, 176–179 (1968).
  • 17. T. Saitoh and T. Mukai, in Coherence, Amplification and Quantum Effects in Semiconductor Lasers, ed. Y. Yamamoto, Chapter 7, Wiley, New York, 1991.
  • 18. N.K. Dutta and Q. Wang, Semiconductor Optical Amplifiers, pp. 183–189, World Scientific, London, 2006.
  • 19. K. Kikuchi, M. Kakui, CE. Zah, and T.P. Lee, “Observation of highly nondengenerate four-wave mixing in 1.5um traveling-wave semiconductor optical amplifier and estimation of nonlinear gain coefficient”, IEEE J. Quantum Electron. 28, 151-156 (1992).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9adafa30-62a1-4383-a70e-b639d05ff969
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.