PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Observations on relations between marine aerosol fluxes and surface-generated noise in the southern Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents the preliminary results of combining underwater acoustic ambient noise measurements with those of in-situ sea spray fluxes (SSF). Hydroacoustic measurements (in the frequency range 80 Hz-12.5 kHz) were made using an underwater noise recording system developed at the Institute of Oceanology of the Polish Academy of Sciences which was then deployed in the southern Baltic Sea. The simultaneous measurements of coarse sea spray fluxes (with particle diameters ranging from 0.5 to 47 µm) were made on board the r/v Oceania using the gradient method. Observations were conducted for the duration of the passage of an atmospheric front that lasted 2.5 days (60 hours of measurements). There were significant differences in the sound pressure level (SPL) and aerosol fluxes observed between the first part of measurements (developing wave state) and the second part (developed waves). Wave parameters, such as peak period, significant wave height, wave age, and mean wave slope acquired from the WAM (WAve Model), were used to investigate the impact of wave field properties on noise and aerosol flux measurements. We observed different behaviours in the power spectrum density (PSD) levels of noise for these parameters depending on the wave state development.
Czasopismo
Rocznik
Strony
413--427
Opis fizyczny
Bibliogr. 73 poz., fot., mapa, rys., tab., wykr.
Twórcy
  • Physical Oceanography Department, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
  • Marine Physics Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
  • Physical Oceanography Department, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
Bibliografia
  • [1] Abramowitz, M., Stegun, I. A., 1975. Handbook Of Mathematical Functions. Dover Publ., New York, 1045 pp.
  • [2] Afeti, G. M., Resh, F. J., 1990. Distribution of the liquid aerosol produced from bursting bubbles in sea and distilled water. Tellus B 42, 378-384, https://doi.org/10.1034/j.1600-0889.1990.t01-2-00007.x.
  • [3] Andreas, E. L., 2007. Comment on ‘Vertical coarse aerosol fluxes in the atmospheric surface layer over the North Polar Water of the Atlantic’ by Tomasz Petelski and Jacek Piskozub. J. Geophys. Res.-Oceans 112 (C11), art. C11010, https://doi.org/10.1029/2007JC004184.
  • [4] Andreas, E. L., 1998. A New Sea Spray Generation Function for Wind Speeds up to 32 m/s. J. Phys. Oceanogr. 28, 2175-2184, https://doi.org/10.1175/1520-0485(1998)028<2175:ANSSGF>2.0.CO;2.
  • [5] Andreas, E. L., 1992. Sea Spray and the Turbulent Air-Sea Heat Fluxes. J. Geophys. Res. 97, 11429-11441, https://doi.org/10.1029/92JC00876.
  • [6] Andreas, E. L., 1995. The Temperature of Evaporating Sea Spray Droplets. J. Atmos. Sci. 52 (7), 852-862, https://doi.org/10.1175/1520-0469(1995)052<0852:TTOESS>2.0.CO;2.
  • [7] Andreas, E. L., Jones, K. F., Fairall, C. W., 2010. Production velocity of sea spray droplets. J. Geophys. Res. 115, art. no. C12065, https://doi.org/10.1029/2010JC006458.
  • [8] Blanchard, D. C., 1963. The electrification of the atmosphere by particles from bubbles in the sea. Prog. Oceanogr. 1, 73-112, https://doi.org/10.1016/0079-6611(63)90004-1.
  • [9] Blanchard, D. C., 1964. Sea-to-Air Transport of Surface Active Material. Science 146 (3642), 396-397, https://doi.org/10.1126/SCIENCE.146.3642.396.
  • [10] Blanchard, D. C., Syzdek, L. D., 1988. Film drop production as a function of bubble size. J. Geophys. Res. 93 (C4), 3649-3654, https://doi.org/10.1029/JC093iC04p03649.
  • [11] Bortkovskii, R. S., Novak, V. A., 1993. Statistical dependencies of sea state characteristics on water temperature and wind-wave age. J. Mar. Syst. 4, 161-169, https://doi.org/10.1016/0924-7963(93)90006-8.
  • [12] Bourassa, M. A., Vincent, D. G., Wood, W. L., Bourassa, M. A., Vincent, D. G., Wood, W. L., 2001. A Sea State Parameterization with Nonarbitrary Wave Age Applicable to Low and Moderate Wind Speeds. J. Phys. Oceanogr. 31, 2840-2851, https://doi.org/10.1175/1520-0485(2001)031<2840:ASSPWN>2.0.CO;2.
  • [13] Callaghan, A. H., 2013. An improved whitecap timescale for sea spray aerosol production flux modeling using the discrete whitecap method. J. Geophys. Res. Atmos. 118 (17), 9997-10010, https://doi.org/10.1002/jgrd.50768.
  • [14] Crouch, W. W., Burt, P. J., 1972. The Logarithmic Dependence of Surface-Generated Ambient-Sea-Noise Spectrum Level on Wind Speed. J. Acoust. Soc. Am. 51, 1066-1072, https://doi.org/10.1121/1.1912926.
  • [15] de Leeuw, G., Andreas, E. L., Anguelova, M. D., Fairall, C. W., Lewis, E. R., O’Dowd, C., Schulz, M., Schwartz, S. E., 2011. Production flux of sea spray aerosol. Rev. Geophys 49 (2), art. no. 2010RG000349, https://doi.org/10.1029/2010RG000349.
  • [16] de Leeuw, G., Neele, F. P., Hill, M., Smith, M. H., Vignati, E., 2000. Production of sea spray aerosol in the surf zone. J. Geophys. Res. Atmos. 105, 29397-29409, https://doi.org/10.1029/2000JD900549.
  • [17] Deane, G. B., Stokes, M. D., 2002. Scale dependence of bubble creation mechanisms in breaking waves. Nature 418, 839-844, https://doi.org/10.1038/nature00967.
  • [18] Dragan, A., Klusek, Z., Swerpel, B., 2011. Passive acoustic detection and observations of wind-wave breaking processes. Hydroacoustics 14, 29-38.
  • [19] Esters, L., Landwehr, S., Sutherland, G., Bell, T. G., Christensen, K. H., Saltzman, E. S., Miller, S. D., Ward, B., 2017. Parameterizing air-sea gas transfer velocity with dissipation. J. Geophys. Res.-Oceans 122, 3041-3056, https://doi.org/10.1002/2016JC012088.
  • [20] Fairall, C. W., Kepert, J. D., Holland, G. J., 1994. The effect of sea spray on surface energy transports over the ocean. Glob. Atmos. Ocean Syst. 2, 121-142.
  • [21] Felizardo, F. C., Melville, W. K., Felizardo, F. C., Melville, W. K., 1995. Correlations between Ambient Noise and the Ocean Surface Wave Field. J. Phys. Oceanogr. 25, 513-532, https://doi.org/10.1175/1520-0485(1995)025<0513:CBANAT>2.0.CO;2.
  • [22] Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W., Walden, H., 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergänzungsh, 8-12.
  • [23] Hoppel, W. A., Frick, G. M., Fitzgerald, J. W., Larson, R. E., 1994. Marine boundary layer measurements of new particle formation and the effects nonprecipitating clouds have on aerosol size distribution. J. Geophys. Res. 99 (D7), 14443-14459, https://doi.org/10.1029/94JD00797.
  • [24] IPCC — Intergovernmental Panel on Climate Change, 2013. Clouds and Aerosols. In: Climate Change 2013 — The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, 571-657.
  • [25] Jensen, D. R., Gathman, S. G., Zeisse, C. R., McGrath, C. P., De Leeuw, G., Smith, M. A., Frederickson, P. A., Davidson, K. L., 2001. Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments. Opt. Eng. 40 (8), 13 pp., https://doi.org/10.1117/1.1387985.
  • [26] Kerman, B. R., 1984. Underwater sound generation by breaking wind waves. J. Acoust. Soc. Am. 75, 149-165, https://doi.org/10.1121/1.390409.
  • [27] Kiger, K. T., Duncan, J. H., 2012. Air-Entrainment Mechanisms in Plunging Jets and Breaking Waves. Annu. Rev. Fluid Mech. 44, 563-596, https://doi.org/10.1146/annurev-fluid-122109-160724.
  • [28] Klusek, Z., 2011. Ambient sea noise in the Baltic Sea — review of investigations. Hydroacoustics 14, 75-82.
  • [29] Klusek, Z., Lisimenka, A., 2016. Seasonal and diel variability of the underwater noise in the Baltic Sea. J. Acoust. Soc. Am, 139, art. no. 1537, https://doi.org/10.1121/1.4944875.
  • [30] Koga, M., 1981. Direct production of droplets from breaking wind-waves its observation by a multi-colored overlapping exposure photographing technique. Tellus 33, 552-563, https://doi.org/10.1111/j.2153-3490.1981.tb01781.x.
  • [31] Komen, G. J., 1994. Dynamics and modelling of ocean waves. Cambridge Univ. Press, Cambridge, 532 pp.
  • [32] Kraan, G., Oost, W. A., Janssen, P. A. E. M., 1996. Wave Energy Dissipation by Whitecaps. J. Atmos. Ocean. Technol. 13, 262-267, https://doi.org/10.1175/1520-0426(1996)013<0262:WEDBW>2.0.CO;2.
  • [33] Lewis, E. R., Schwartz, S. E., 2004. Sea salt aerosol production: Mechanisms, methods, measurements and models — A critical review. Geophys. Monogr. Ser, 152, 413 pp, https://doi.org/10.1029/152GM01.
  • [34] Lhuissier, H., Villermaux, E., 2012. Bursting bubble aerosols. J. Fluid Mech. 696, 5-44, https://doi.org/10.1017/jfm.2011.418.
  • [35] Loewen, M. R., Melville, W. K., 1991. Microwave backscatter and acoustic radiation from breaking waves. J. Fluid Mech. 224, 601-623, https://doi.org/10.1017/S0022112091001891.
  • [36] MacIntyre, F., 1972. Flow patterns in breaking bubbles. J. Geophys. Res. 77, 5211-5228, https://doi.org/10.1029/JC077i027p05211.
  • [37] Marks, R., 1990. Preliminary investigations on the influence of rain on the production, concentration, and vertical distribution of sea salt aerosol. J. Geophys. Res. 95 (C12), 22299-22304, https://doi.org/10.1029/JC095iC12p22299.
  • [38] Markuszewski, P., Kosecki, S., Petelski, T., 2017a. Sea spray aerosol fluxes in the Baltic Sea region: Comparison of the WAM model with measurements. Estuar. Coast. Shelf Sci. 195, 16-22, https://doi.org/10.1016/j.ecss.2016.10.007.
  • [39] Markuszewski, P., Rozwadowska, A., Cisek, M., Makuch, P., Petelski, T., 2017b. Aerosol physical properties in Spitsbergen’s fjords: Hornsund and Kongsfjorden during AREX campaigns in 2014 and 2015. Oceanologia 59 (4), 460-472, https://doi.org/10.1016/J.OCEANO.2017.03.012.
  • [40] Massel, S. R., 2007. Ocean Waves Breaking and Marine Aerosol Fluxes. Atmos. Ocenaogr. Sci. Library, 38. Springer-Verlag, New York, 316 pp., https://doi.org/10.1007/978-0-387-69092-6.
  • [41] Massel, S. R., 2018. Ocean surface waves: Their physics and prediction. Adv. Ser. Ocean Eng., World Sci., 800 pp., https://doi.org/10.1142/10666.
  • [42] Medwin, H., Beaky, M. M., 1989. Bubble sources of the Knudsen sea noise spectra. J. Acoust. Soc. Am. 86 (3), 1124-1130, https://doi.org/10.1121/1.398104.
  • [43] Minnaert, M., 1933. XVI. On musical air-bubbles and the sounds of running water. London, Edinburgh. Dublin Philos. Mag. J. Sci. 16 (104), 235-248, https://doi.org/10.1080/14786443309462277.
  • [44] Monahan, E. C., Fairall, C. W., Davidson, K. L., Boyle, P. J., 1983. Observed inter-relations between 10 m winds, ocean whitecaps and marine aerosols. Q. J. R. Meteorol. Soc. 109, 379-392, https://doi.org/10.1002/qj.49710946010.
  • [45] Monin, A. S., Obukhov, A. M., 1954. Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akad. Nauk SSSR Geophiz. Inst. 24 (151), 163-187.
  • [46] Norris, S. J., Brooks, I. M., Hill, M. K., Brooks, B. J., Smith, M. H., Sproson, D. A. J., 2012. Eddy covariance measurements of the sea spray aerosol flux over the open ocean. J. Geophys. Res. 117 (D7), art. no. D07210, https://doi.org/10.1029/2011JD016549.
  • [47] Norris, S. J., Brooks, I. M., Moat, B. I., Yelland, M. J., de Leeuw, G., Pascal, R. W., Brooks, B., 2013. Near-surface measurements of sea spray aerosol production over whitecaps in the open ocean. Ocean Sci 9, 133-145, https://doi.org/10.5194/os-9-133-2013.
  • [48] Nystuen, J. A., 2001. Listening to raindrops from underwater: An acoustic disdrometer. J. Atmos. Ocean. Technol. 18 (10), 1640-1657, https://doi.org/10.1175/1520-0426(2001)018<1640:LTRFUA>2.0.CO;2.
  • [49] Petelski, T., 2005. Coarse Aerosol Concentration Over the North Polar Waters of the Atlantic. Aerosol Sci. Technol. 39, 695-700, https://doi.org/10.1080/02786820500182362.
  • [50] Petelski, T., 2003. Marine aerosol fluxes over open sea calculated from vertical concentration gradients. J. Aerosol Sci. 34, 359-371, https://doi.org/10.1016/S0021-8502(02)00189-1.
  • [51] Petelski, T., Markuszewski, P., Makuch, P., Jankowski, A., Rozwadowska, A., 2014. Studies of vertical coarse aerosol fluxes in the boundary layer over the Baltic Sea. Oceanologia 56 (4), 697-710, https://doi.org/10.5697/oc.56-4.697.
  • [52] Petelski, T., Piskozub, J., 2006. Vertical coarse aerosol fluxes in the atmospheric surface layer over the North Polar Waters of the Atlantic. J. Geophys. Res, 111 (C6), art. no. C06039, https://doi.org/10.1029/2005JC003295.
  • [53] Petelski, T., Piskozub, J., Paplińska-Swerpel, B., 2005. Sea spray emission from the surface of the open Baltic Sea. J. Geophys. Res.-Oceans, 110 (C10), art. no. C10023, https://doi.org/10.1029/2004JC002800.
  • [54] Prosperetti, A., 1988. Bubble-related ambient noise in the ocean. J. Acoust. Soc. Am. 84, 1042-1054, https://doi.org/10.1121/1.396740.
  • [55] Prosperetti, A., Lu, N. Q., Kim, H. S., 1993. Active and passive acoustic behavior of bubble clouds at the ocean’s surface. J. Acoust. Soc. Am. 93, 3117-3127, https://doi.org/10.1121/1.405696.
  • [56] Resch, F. J., Darrozes, J. S., Afeti, G. M., 1986. Marine liquid aerosol production from bursting of air bubbles. J. Geophys. Res. 91 (C1), 1019-1029, https://doi.org/10.1029/JC091iC01p01019.
  • [57] Savelyev, I. B., Anguelova, M. D., Frick, G. M., Dowgiallo, D. J., Hwang, P. A., Caffrey, P. F., Bobak, J. P., 2014. On direct passive microwave remote sensing of sea spray aerosol production. Atmos. Chem. Phys. 14, 1161-11631, https://doi.org/10.5194/acp-14-11611-2014.
  • [58] Sellegri, K., O’Dowd, C. D., Yoon, Y. J., Jennings, S. G., de Leeuw, G., 2006. Surfactants and submicron sea spray generation. J. Geophys. Res. 111, art. no. D22215, https://doi.org/10.1029/2005JD006658.
  • [59] Smith, M. H., Park, P. M., Consterdine, I. E., 1993. Marine aerosol concentrations and estimated fluxes over the sea. Q. J. R. Meteorol. Soc. 119, 809-824, https://doi.org/10.1002/qj.49711951211.
  • [60] Spiel, D. E., 1998. On the births of film drops from bubbles bursting on seawater surfaces. J. Geophys. Res.-Oceans 103, 24907-24918, https://doi.org/10.1029/98JC02233.
  • [61] Stramska, M., Petelski, T., 2003. Observations of oceanic whitecaps in the north polar waters of the Atlantic. J. Geophys. Res. 108 (C3), 108 (C3), art. no. 3086, https://doi.org/10.1029/2002JC001321.
  • [62] Tsigaridis, K., Koch, D., Menon, S., 2013. Uncertainties and importance of sea spray composition on aerosol direct and indirect effects. J. Geophys. Res. Atmos. 118, 220-235, https://doi.org/10.1029/2012JD018165.
  • [63] Vagle, S., Large, W. G., Farmer, D. M., Vagle, S., Large, W. G., Farmer, D. M., 1990. An Evaluation of the WOTAN Technique of Inferring Oceanic Winds from Underwater Ambient Sound. J. Atmos. Ocean. Technol. 7, 576-595, https://doi.org/10.1175/1520-0426(1990)007<0576:AEOTWT>2.0.CO;2.
  • [64] Vakkayil, R., Graber, H. C., Large, W. G., 1996. Oceanic winds estimated from underwater ambient noise observations in SWADE. In: OCEANS 96 MTS/IEEE Conf. Proc. The Coastal Ocean — Prospects for the 21st Century. IEEE, 45-51.
  • [65] Veron, F., 2015. Ocean Spray. Ann. Rev. Fluid Mech. 47, 507-538, https://doi.org/10.1146/annurev-fluid-010814-014651.
  • [66] WAMDI Group, 1988. The WAM Model. J. Phys. Oceanogr. 18, 1775-1810, https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2.
  • [67] Wenz, G. M., 1962. Acoustic Ambient Noise in the Ocean: Spectra and Sources. J. Acoust. Soc. Am. 34, 1936-1956, https://doi.org/10.1121/1.1909155.
  • [68] Wilson, J. D., Makris, N. C., 2008. Quantifying hurricane destructive power, wind speed, and air-sea material exchange with natural undersea sound. Geophys. Res. Lett 35 (10), art. no. L10603, https://doi.org/10.1029/2008GL033200.
  • [69] Wilson, P.R., 1980. The interaction of acoustic waves with flux tubes. Astrophys. J. 237, 1008-1014, https://doi.org/10.1086/157946.
  • [70] Wu, J., 2002. Jet Drops Produced by Bubbles Bursting at the Surface of Seawater. J. Phys. Oceanogr. 32, 3286-3290, https://doi.org/10.1175/1520-0485(2002)032<3286:JDPBBB>2.0.CO;2.
  • [71] Wu, J., 1993. Production of spume drops by the wind tearing of wave crests: The search for quantification. J. Geophys. Res. 98 (C10), 18221-18227, https://doi.org/10.1029/93JC01834.
  • [72] Wu, J., 1981. Evidence of Sea Spray Produced by Bursting Bubbles Science, 212, 324-326.
  • [73] Zedel, L., Gordon, L., Osterhus, S., Zedel, L., Gordon, L., Osterhus, S., 1999. Ocean Ambient Sound Instrument System: Acoustic Estimation of Wind Speed and Direction from a Subsurface Package. J. Atmos. Ocean. Technol. 16, 1118-1126, https://doi.org/10.1175/1520-0426(1999)016<1118:OASISA>2.0.CO;2.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ad843ab-f4df-4129-935c-723e9045992e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.