Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Soil erosion is both the cause and effect of land degradation. Land use/land cover conversion that changes the inherent landscape structure of watersheds leads to soil loss increase. Pantabangan-Carranglan Watershed (PCW) as a major source of irrigation, electricity, biodiversity, livelihood, and other ecosystem services, thus, it is imperative to spatially and temporally estimate the soil erosion within its boundary to assist and guide decision-makers in planning conservation and management of the watershed. Using the Revised Universal Soil Loss Equation (RUSLE) model, remotely sensed data, soil analysis, and geographical information system, the soil erosion rate in PCW was estimated. Results showed that there is increasing soil erosion in PCW over time. In 2010 soil erosion rate was estimated to be 134 tons·ha-1·yr-1 which increased to 141 tons·ha-1·yr-1 and 154 tons·ha-1·yr-1 in 2015 and 2020, respectively. Considering the average soil erosion rate and land cover types in PCW, annual crop and open/barren land cover types have the highest average soil erosion rate through time with moderate and catastrophic erosion levels, respectively.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--14
Opis fizyczny
Bibliogr. 25 poz. rys. tab. wykr.
Twórcy
autor
- Bulacan Agricultural State College (BASC), College of Agriculture, Bulacan, Philippines
autor
- Division of Soil Science, Agricultural Systems Institute, College of Agriculture and Food Science, University of the Philippines Los Banos, Laguna, Philippines
autor
- Division of Soil Science, Agricultural Systems Institute, College of Agriculture and Food Science, University of the Philippines Los Banos, Laguna, Philippines
autor
- School of Environmental Science and Management, University of the Philippines Los Banos, Laguna, Philippines
Bibliografia
- 1. Adornado, H.A., Yoshida, M. 2010. Assessing the adverse impacts of climate change: A case study in the Philippines. Journal of Developments in Sustainable Agriculture, 5, 141–146.
- 2. Aguilos, F.M.T., Encanto, F.A.V, Tolentino, G.M.F., Jolito, M.D.B. 2021. Assessment of soil erosion risk within the Maasin Watershed Forest Reserve, Iloilo, Philippines using the Revised Universal Soil Loss Equation (RUSLE) and Geographical Information System (GIS). Publiscience, 4(1), 106–111.
- 3. Blanco, A.C., Nadaoka, K. 2006. A Comparative assessment and estimation of potential soil erosion rates and patterns in Laguna Lake watershed using three models: Towards development of an erosion index system for integrated watershed-lake management. Symposium on Infrastructure Development and the Environment, December, 1–12.
- 4. Dapin, I.G., Ella, V.B. 2023. GIS-based soil erosion risk assessment in the watersheds of Bukidnon, Philippines Using the RUSLE Model. Sustainability (Switzerland), 15(4). https://doi.org/10.3390/su15043325
- 5. David, W.P. 1988. Soil and water conservation planning: policy issues and recommendations. Journal of Philippine Development, 15(1), 47–84.
- 6. David, W.P., Collado Jr., C.U. 1987. Hydrologic validation of the pantabangan watershed management and erosion control project. Philippines Istitute for Development Studies, 87(3), 1–23.
- 7. Desmet, P.J.J., Govers, G. 1996. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Cons., 51(5), 427-433.
- 8. Elkaduwa, W.K.B. 1994. Soil Erosion, Sediment Transport and Reservoir Sedimentation Relations Observed at Pantabangan and Magat Reservoirs in the Philippines, 6.
- 9. FAO and ITPS. 2015. Status of the world’s soil resources (SWSR) – Main report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy
- 10. Georgia Soil and Water Conservation Commission (GaSWCC)., 2000. Manual for Erosion and Sediment Control Fifth Edition. P.O. Box 8024, 4310 Lexington Road, Athens, GA 30603. www.gaswcc.org.
- 11. Hernandez, E.C., Henderson, A., Oliver, D.P. 2012. Effects of changing land use in the Pagsanjan-Lumban catchment on suspended sediment loads to Laguna de Bay, Philippines. Agricultural Water Management, 106, 8–16. https://doi.org/10.1016/j.agwat.2011.08.012.
- 12. Hernando, D., Romana, M.G. 2015. Development of a soil erosion classification system for cut and fill slopes. Transportation Infrastructure Geotechnology, 2(4), 155–166. https://doi.org/10.1007/s40515-015-0024-9.
- 13. Mitasova, H., Hofierka, J., Zlocha, M., Iverson, L.R. 1996. Modelling topographic potential for erosion and deposition using GIS. International Journal of Geographical Information Systems, 10(5), 629-641.
- 14. Mitasova, H., Brown, W.M., Johnston, D.M. 2000. Terrain modeling and soil erosion simulation final report. Geographic Modelling and Systems Laboratory, University of Illinois at Urbana-Champaign.
- 15. Moore, I.D., Burch, G.J. 1986. Modelling erosion and deposition: Topographic effects. Transactions of the American Society of Agricultural Engineers, 29(6), 1624–1630. https://doi.org/10.13031/2013.30363.
- 16. National Academies of Sciences, E. and M. 2019. Relationship between erodibility and properties of soils. In Relationship Between Erodibility and Properties of Soils. https://doi.org/10.17226/25470.
- 17. National Power Corporation. 1997. Pantabangan-carrangalan watershed management plan. Watershed Management Department. Quezon City, The Philippines.
- 18. Panagos, P., Borrelli, P., Meusburger, K., Yu, B., Klik, A., Lim, K.J., Yang, J.E., Ni, J., Miao, C., Chattopadhyay, N., Sadeghi, S.H., Hazbavi, Z., Zabihi, M., Larionov, G.A., Krasnov, S.F., Gorobets, A.V., Levi, Y., Erpul, G., Birkel, C., Hoyos N., Naipal V., Oliveira P.T.S., Bonilla C.A., Meddi M., Nel W., Al Dashti H., Boni M., Diodato N., Van Oost K., Nearing M., Ballabio, C. 2017. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-04282-8.
- 19. Po, E.A., Sabines, M., Taat, J. 2018. Determination of farm level soil erosion using the revised universal loss equation (RUSLE). Mindanao Journal of Science and Technology, 16, 154–170.
- 20. Pulhin, J.M., Peras, R.J.J., Cruz, R.V.O., Lasco, R.D., Pulhin, F.B., Tapia, M. a. 2006. Vulnerability of communities to climate variability and extremes: Pantabangan-Carranglan watershed in the Philippines. Environmental Protection, 44, 54.
- 21. Salvacion, A.R. 2022. Delineating soil erosion risk in Marinduque, Philippines using RUSLE. Geo-Journal, 87(2), 423–435. https://doi.org/10.1007/s10708-020-10264-7.
- 22. Saplaco, S.R., Bantayan N.C. and Cruz R.V.O. 2001. GIS-based atlas of selected watersheds in the Philippines. DOST-PCARRD and UPLB-CFNR-ERSG.
- 23. Wlschmeier, W.H., Mannering, J.V. 1969. Relation of soil properties to its erodibility. Division S-6 — Soil And Water Management And Conservation. Soil Sci. Soc. Amer. Proc., 33.
- 24. Wischmeier, W.H., Smith, D.D., 1958. Predicting rainfall erosion losses. Agriculture Handbook 537, 5(537), 285–291. http://doi.org/10.1029/TR039i002p00285.
- 25. Wischmeier, W.H. and Smith, D.D. 1978. Predicting rainfall erosion losses - A Guide to conservation Planning. USDA - Agriculture Handbook 537, Washington, DC.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ad660b3-05f0-401f-ad41-a44c61c76527
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.