PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Manufacturing process and optical properties of zinc oxide thin films as photoanode in DSSC

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: It has been recently observed, that zinc oxide thin films are gaining much popularity, particularly in applications such as toxic gas sensors, photocatalytic materials and photovoltaic cells. Due to much better physical properties of ZnO compared to the ones of titanium dioxide (TiO2), which is currently the most used material in dye sensitized solar cells, efforts are being made to fabricate DSSCs with thin films and/or nanostructures, including nanowires, nanofibres and nanoparticles of zinc oxide. Design/methodology/approach: In this paper, zinc oxide thin films were prepared using sol-gel and spin coating methods from Zn(COO)2 x 2H2O dissolved in ethanol and acetic acid with ZnO monocrystalline nanoparticles of 0 and 10% (wt.) relative to the final concentration of produced solutions. The effect of calcination process on ZnO thin films at 600°C were examined using atomic force microscope to investigate the morphology of semiconductor coatings, infrared spectroscopy to prove the chemical structure of material. Besides, optical properties were analysed on the basis of absorbance in the function of wavelength spectra and the values of energy band gaps were studied. Findings: The topography analysis of ZnO thin films showed an increase in roughness with the increase of zinc oxide nanoparticles in the thin films material. In addition, the analysis of the optical properties of ZnO thin films showed a decrease in absorption level in the range of near-ultraviolet wavelength for the obtained layers after annealing. Research limitations/implications: It was found that ZnO thin films produced by spin coating and calcination method are a proper material for photoanode in dye-sensitized solar cells, as zinc oxide layers provide better conductivity across the photovoltaic cell. Practical implications: The results provide the possibility of production DSSCs with zinc oxide thin films as photoanode. Originality/value: The dye-sensitized solar cells based on zinc oxide photoanodes could be alternative semiconductor material to titanium dioxide, which is used in nowadays solar cells. It was estimated that ZnO, especially zinc oxide nanostructures have much better physical properties, than TiO2 structures. What is more, zinc oxide thin layers are characterized by the lower energy losses resulting from the physical properties of such nanostructures, which results in more efficient solar energy into electricity conversion.
Rocznik
Strony
33--40
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
autor
  • Department of Materials Processing Technology, Management and Technology in Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Department of Materials Processing Technology, Management and Technology in Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Center for Nanotechnology, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Department of Materials Processing Technology, Management and Technology in Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] O. Ellabban, A.R. Haitham, B. Frede, Renewable energy resources: Current status, future prospects and their enabling technology, Renewable and Sustainable Energy Reviews 39 (2014) 748-764.
  • [2] B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737-740.
  • [3] M. Grätzel, Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4 (2003) 145-153.
  • [4] S.S. Mali, H. Kim, W.J. Jang, H.S. Park, P.S. Patil, C.K. Hong, Novel Synthesis and Characterization of Mesporous ZnO Nanofibers by Electrospinning Technique, ADS Sustainable Chemistry and Engineering 1/9 (2013) 1207-1213.
  • [5] T. Tański, W. Matysiak, Ł. Krzemiński, Analysis of optical properties of TiO2 nanoparticles and PAN/TiO2 composite nanofibers, Materials and Manufacturing Processes 32 (2017) 1218-1224.
  • [6] W. Matysiak, T. Tański, M. Zaborowska, Analysis of the Optical Properties of PVPZnO Composite Nanofibers, in: A. Ochsner, H. Altenbach (Eds.), Properties and characterization of modern materials, Springer, Singapore, 2017, 43-49.
  • [7] P. Jarka, T. Tański, W. Matysiak, Ł. Krzemiński, B. Hajduk, M Bilewicz, Manufacturing and investigation of surface morphology and optical properties of composite thin films reinforced by TiO2, Bi2O3 and SiO2 nanoparticles, Applied Surface Science 424/2 (2017) 206-212, doi: 10.1016/j.apsusc.2017.03.232.
  • [8] R. Govindarajan, K.R. Murali, Sol gel dip coated ZnO films for DSSC applications, International Journal of Applied Engineering Research 10 (2015) 79-81.
  • [9] J.B. Baxter, A.M. Walker, K. van Ommering, E.S. Aydil, Synthesis and characterization of ZnO nanowires and their integration onto dye-sensitized solar cells. Nanotechnology 17 (2006) S304-S312.
  • [10] J.H. Kim, K.P. Kim, D.K. Hwang, Electrospun ZnO Nanofibers as a Photlectrode in Dye-Sensitized Solar Cells, Journal of Nanoscience and Nanotechnology 15/3 (2015) 2346-2350.
  • [11] M.H. Lai, A. Tubtimtae, M.W. Lee, G.J. Wang, ZnO-Nanorod Dye-Sensitized Solar Cells: New Structure without a Transparent Conducting Oxide Layer, International Journal of Photoenergy 2010 (2010) 1-5, doi: 10.1155/2010/497095.
  • [12] W. Zhang, R. Zhu, X. Liu, B. Liu, S. Ramakrishna, Facile construction of nanofibrous ZnO photoelectrode for dye-sensitized solar cells applications, Applied Physics Letters 91/4 (2009) 043304, doi: 10.1063/1.3193661.
  • [13] I.D. Kim, J.M. Hong, B.H. Lee, D.Y. Kim, E.K. Jeon, D.K. Choi, D.J. Yang, Dye-sensitized solar cells using network structure of electrospun ZnO nanofiber mats, Applied Physics Letters 91/16 (2007) 163109, doi: 10.1063/1.2799581.
  • [14] K. Hongsith, N. Hongsith, D. Wongratanaphisan, A. Gardchareon, S. Choopun, Efficiency Enhancement of ZnO Dye-sensitized Solar Cells by Modifying Photoelectrode and Counterelectrode, Energia Procedia 79 (2015) 360-365, doi: 10.1016/j.egypro.2015.11.503.
  • [15] B. Szyszka, Magnetron Sputtering of ZnO Films, in: K. Ellmer, A. Klein, B. Rech (Eds.) Transparent Conductive Zinc Oxide, Springer Series in Materials Science, Vol. 104. Springer, Berlin, Heidelberg, 2008, 187-233.
  • [16] A. Wang, H. Chen, T. Chen, Z. Wu, Y. Li, Y. Wang, Growth and properties of ZnO films grown by the ultrasonic spray-assisted CVD, Journal of Nanoscience and Nanotechnology 14 (2014) 3804-2807.
  • [17] H.Bahadur, A.K. Srivastava, D. Haranath, H. Chander, A. Basu, S.B. Samanta, K.N. Sood, R. Koshore, R.K. Sharma, V. Bhatt, P. Pal, S. Chandra, Nano-structured ZnO films by sol-gel process, Indian Journal of Pure and Applied Physics 45 (2007) 395-399.
  • [18] B.S. Ong, C. Li. Y. Li, Y. Wu, R. Loutfy, Stable, Solution-Processed, High-Mobility ZnO Thin-Film transistors, Journal of the American Chemical Society 129 (2017) 2750-1751.
  • [19] L. Znaidi, G.J.A.A. Solerillia, S. Benyahia, C. Sanchez, A.V. Kanaev, Oriented ZnO thin films synthesis by sol-gel process for laser application, Thin Solid Films 428 (2003) 257-262.
  • [20] S.T. Shishiyanu, T.S. Shishiyanu, O.I. Lupan, Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor, Sensors and Actuators B 107 (2005) 379-386.
  • [21] U. Chaitra, D. Kekuda, K. Mohan Rao, Effect of annealing temperature on the evolution of structural, microctructural and optical properties of spin coated ZnO thin films, Ceramics International 43 (2017) 7115-7122.
  • [22] R. Elilarassi, G. Chandrasekaran, Preparation and optical characterization of ZnO thin film for optoelectronic applications, Proceedings of the International Conference “Emerging Trends in Electronic and Photonic Devices & Systems”, ELECTRO’09, 2009, Varanasi, India.
  • [23] Z.R. Khan, M.S. Khan, M. Zulfequar, M.S. Khan, Optical and Structural Properties of ZnO Thin Films Fabricated by Sol-Gel Method, Materials Science and Applications 2 (2011) 340-345.
  • [24] A. Hernandez, L. Maya, W. Sanche-Mora, E. Sanchez, Sol-gel synthesis, Characterization and photocatalytic activity of mixed oxide ZnO-Fe2O3, Journal of Sol-Gel Science and Technology 42 (2007) 71-78.
  • [25] Z.W. Zhao, B.K. Tay, Optical properties of nanocluster-assembled ZnO thin films by nanocluster-beam deposition, Applied Physics Letters 87/25 (2005) 251912, doi: 10.1063/1.2149170.
  • [26] L. Zhao, J. Lian, Y. Liu, Q. Jiang, Structural and optical properties of ZnO thin films deposited on quartz glass by pulsed laser deposition, Applied Surface Science 252 (2006) 8451-8455.
  • [27] N. Nagayasamy, S. Gandhimathination, V. Weerasamy, The Effect of ZnO Thin Film and Its Structural and Optical Properties Prepared by Sol-Gel Spin Coating Method, Open Journal of Metal 3 (2013) 8-11.
  • [28] R.C. Rai, M. Guminiak, S. Wilser, B. Cai, M.L. Nakarmi, Elevated temperature dependence of energy band gap of ZnO thin films grown by e-beam deposition, Journal of Applied Physics 111/7 (2012) 073511, doi: 10.1063/1.3699365.
  • [29] T. Tański, W. Matysiak, B. Hajduk, Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2, and Bi2O3 nanoparticles, Beilstein Journal of Nanotechnology 7 (2016) 1141-1155.
  • [30] T. Tański, W. Matysiak, Ł. Krzemiński, P. Jarka, K. Gołombek, Optical properties of thin fibrous PVP/SiO2 composite mats perpared via the sol-gel and electrospinning methods, Applied Surface Science 424 (2017) 184-189.
  • [31] P. Raghu, C.S. Neveen, J. Shailaja, H.M. Mahesh, Enhanced Optical Band-gap of ZnO Thin Films by Sol-gel Technique, AIP Conference Proceedings 1728/1 (2016) 020469, doi: 10.1063/1.4946520.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9acc89df-0530-4b25-bf69-9a6393f0aa9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.