Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a rocket flight safety analysis using methods from the internationally recognized standard RCC 321-20 with an emphasis on a suborbital launch from the Polish coast. Currently, several entities are launching (or planning to launch) suborbital rockets and land them in the Baltic sea – and such flights are expected to be performed using more and more capable rockets with increasing launch frequency. While the present approach in Poland is to close a predefined air space, monitor or close the maritime zone to any traffic and ensure that the impact point dispersion of all rocket elements will fit within that restricted area, established and proven methods often take advantage of advanced calculations of flight risk to the public, aircraft and vessels. This paper demonstrates this approach and compares relative rocket or missile flight safety from Poland to other locations frequently used for such exercises. The results of this work may also be beneficial when planning safety measures for military exercises involving missiles.
Czasopismo
Rocznik
Tom
Strony
31--46
Opis fizyczny
Bibliogr. 9 poz., rys., tab.
Twórcy
autor
- Łukasiewicz Research Network – Institute of Aviation, Warsaw
autor
- Łukasiewicz Research Network – Institute of Aviation, Warsaw
autor
- Łukasiewicz Research Network – Institute of Aviation, Warsaw
autor
- Łukasiewicz Research Network – Institute of Aviation, Warsaw
autor
- Łukasiewicz Research Network – Institute of Aviation, Warsaw
autor
- Łukasiewicz Research Network – Institute of Aviation, Warsaw
Bibliografia
- 1. Garcia, A. et. al. (2011). VSB-30 sounding rocket: history of flight performance. JATM Journal of Aerospace Technology and Management, 3(2), 325–330. doi:10.5028/jatm.2011.03032211
- 2. Gee, K., & Lawrence, S. L. (2013). Launch Vehicle Debris Models and Crew Vehicle Ascent Abort Risk. NASA Ames Research Center. doi:10.1109/RAMS.2013.6517689
- 3. Haber, J., Bonnal, C., Leveau, C., Vila, J., & Toussaint, M. (2013). Chapter 4 – Safety in Launch Operations. In F. A. Allahdadi, I. Rongier, & P. D. Wilde, Safety Design for Space Operations (pp. 85–186). doi:10.1016/C2010-0-65559-3
- 4. Manuel Capristan, Francisco. (2016). Advances in flight safety analysis for commercial space transportation. Retrieved from https://purl.stanford.edu/rc621yy1938
- 5. Noga, T., Michalow, M., & Ptasinski, G. (2021). Comparison of dispersion calculation methods for sounding rockets (in press). Journal of Space Safety Engineering. doi:10.1016/j.jsse.2021.08.006
- 6. Okninski, A., Marciniak, B., Bartkowiak, B., Kaniewski, D., Matyszewski, J., Kindracki, J., & Wolanski, P. (2015). Development of the Polish Small Sounding Rocket Program. Acta Astronautica, 46–56. doi:10.1016/j.actaastro.2014.12.001
- 7. Range Commanders Council. (2020). Common Risk Criteria Standards for National Test Ranges RCC 321-20. White Sands: Range Commanders Council.
- 8. Tucker, J. (1998). Theater Missile Defense Extended Test Range Supplemental Environmental Impact Statement – Eglin Gulf Test Range. Volume 2. Retrieved from https://apps.dtic.mil/sti/citations/ADA413955
- 9. WZL1. (2011). Suborbitalny system rakietowy do wynoszenia ladunkow badawczych. Retrieved 10 2021, 11, from https://wzl1.mil.pl/suborbitalny-system-rakietowy-do-wynoszenia-ladunkow-badawczych/
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9acb07fa-0177-4a51-99bd-ac6253509f47