PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Open-cast mining deformations monitoring using Sentinel-1 SAR data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Land surface deformation created by mining activities can have negative impacts on the environment. Measuring them can be a tool for managing the environmental impacts of mining. Synthetic Aperture Radar Interferometry is a remote sensing method for measuring deformations. The main aim of this research is to investigate the deformation phenomenon on a region scale and extend our understanding of it to all mining deformation areas across the country. This paper used Small Baseline Subset Interferometric Synthetic Aperture Radar technology to obtain deformations information in the Sangan mine based on mining activities. We used 48 scenes of Single Look Complex (SLC) data acquired by the Sentinel-1A, C-band of the European Space Agency descending orbit paths from 2014 to 2020. The Time Series of SBAS results show that the deformation velocity rate is about -20 to -35 mm/yr, and the displacement is attributed to approximately -120 mm in the Line of Sight direction. The main deformation zone is situated in the mining area on the main alluvial fan. This study presented the relationship between deformations and mining activity's effects on the ground. Mining activities were accompanied by ground deformation in the mining area: the ground deformation is exacerbated by the increasing mining quantity, and as a result will cause erosion, flood, and other geomorphologic phenomena in the area. We compared the results of the SBAS technique with leveling data for validating the data of SBAS. Their comparison shows approximately suitable agreement with the results of SBAS.
Rocznik
Strony
268--279
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
  • Ferdowsi University of Mashhad, Department of Geography, Mashhad, Iran
  • Ferdowsi University of Mashhad, Department of Geography, Mashhad, Iran
  • Complutense University of Madrid, Faculty of Geological Sciences, Madrid, Spain c Payame Noor University, Department of Geology, Tehran, Iran
  • Payame Noor University, Department of Geology, Tehran, Iran
  • Indian Institute of Technology (ISM), Department of Mining Engineering, Dhanbad, Jharkhand 826004, India
Bibliografia
  • [1] Lee H. Interferometric synthetic aperture radar coherence imagery for land surface change detection (Doctoral dissertation). Imperial College London; 2001.
  • [2] Tarolli P, Sofia G. Human topographic signatures and derived geomorphic processes across landscapes. Geomorphology 2016;255:40-161.
  • [3] Chen J, Li K, Chang KJ, et al. Open-pit mining geomorphic feature characterisation. Int J Appl Earth Obs Geoinf 2015;42: 76-86.
  • [4] Hu H. Deformation monitoring and modeling based on LiDAR data for slope stability assessment. 2013.
  • [5] Colesanti C, Mouelic SL, Bennani M, Raucoules D, Carnec C, Ferretti A. Detection of mining related ground instabilities using the Permanent Scatterers techniqueda case study in the east of France. Int J Rem Sens 2005;26(1):201-7.
  • [6] Ge L, Chang HC, Rizos C. Mine subsidence tracking the use of multi-supply satellite tv for pc SAR images. Photogramm Eng Rem Sens 2007;73(3):259-66.
  • [7] Tang W, Motagh M, Zhan W. Monitoring active open-pit mine stability in the Rhenish coalfields of Germany using a coherence-based SBAS method. Int J Appl Earth Obs Geoinf 2020;93:102217.
  • [8] Zhu C, Wang Z, Li P, Motagh M, Zhang L, Jiang Z, et al. Retrieval and prediction of three-dimensional displacements by combining the DInSAR and probability integral method in a mining area. IEEE J Sel Top Appl Earth Obs Rem Sens 2020;13:1206-17.
  • [9] Chen Y, Zhang G, Ding X, Li Z. Monitoring earth surface deformations with InSAR technology: principles and some critical issues. Journal of Geospatial Engineering 2000;2(1):3-22.
  • [10] Prati C, Ferretti A, Perissin D. Recent advances on floor floor deformation dimension by way of repeated space-borne SAR observations. J Geodyn 2010;49(3-4):161-70.
  • [11] Aydoner C, Maktav D, Alparslana E. Ground deformation mapping the use of InSAR. In: ISPRS congress technical commission I; 2004. p. 120-3.
  • [12] Ishwar SG, Kumar D. Application of DInSAR in mine floor subsidence tracking and prediction. Curr Sci 2017;112(1):46-51.
  • [13] Gabriel AK, Goldstein RM, Zebker HA. Mapping small elevation changes over vast areas: differential radar interferometry. J Geophys Res Solid Earth 1989;94(B7):9183-91.
  • [14] Di Traglia F, Nolesini T, Ciampalini A, Solari L, Frodella W, Bellotti F, et al. Tracking morphological changes and slope instability using spaceborne and ground-based SAR data. Geomorphology 2018;300:95-112.
  • [15] Wu Q, Jia C, Chen S, Li H. SBAS-InSAR based deformation detection of urban land, created from mega-scale mountain excavating and valley filling in the Loess Plateau: the case study of Yan'an City. Rem Sens 2019;11(14):1673.
  • [16] He Y, Wang W, Yan H, Zhang L, Chen Y, Yang S. Characteristics of surface deformation in lanzhou with sentinel-1A TOPS. Geosciences 2020;10(3):99.
  • [17] Pepe A, Calo F. A review of interferometric synthetic aperture radar (InSAR) multi-track approaches for the retrieval of Earth's surface displacements. Appl Sci 2017;7(12):1264.
  • [18] Hooper A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 2008;35(16):L16403.
  • [19] Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry. IEEE Trans Geosci Rem Sens 2001;39(1): 8-20.
  • [20] Cavalie O, Doin MP, Lasserre C, Briole P. Ground motion measurement in the Lake Mead area, Nevada, by differential synthetic aperture radar interferometry time series analysis: probing the lithosphere rheological structure. J Geophys Res Solid Earth 2007;112(B3):B03408.
  • [21] Berardino P, Fornaro G, Lanari R, Sansosti E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Rem Sens 2002;40(11):2375-83.
  • [22] Guzzetti F, Manunta M, Ardizzone F, Pepe A, Cardinali M, Zeni G, et al. Analysis of ground deformation detected using the SBAS-DInSAR technique in Umbria, central Italy. Pure Appl Geophys 2009;166(8-9):1425-59.
  • [23] Zebker HA, Rosen PA, Hensley S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J Geophys Res Solid Earth 1997; 102(B4):7547-63.
  • [24] Hooper A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 2008;35(16):L16608.
  • [25] Jiang L, Lin H, Cheng S. Monitoring and assessing reclamation settlement in coastal areas with advanced InSAR techniques: Macao city (China) case study. Int J Rem Sens 2011;32(13):3565-88.
  • [26] Chen F, Lin H, Hu X. Slope superficial displacement monitoring by small baseline SAR interferometry using data from L-band ALOS PALSAR and X-band TerraSAR: a case study of Hong Kong, China. Rem Sens 2014;6(2):1564-86.
  • [27] Ao M, Wang C, Xie R, et al. Monitoring the land subsidence with persistent scatterer interferometry in Nansha District, Guangdong, China. Nat Hazards 2015;75(3):2947-64.
  • [28] Zhu Y, Zhou S, Zang D, Lu T. Monitoring of surface subsidence of the mining area based on SBAS. Int Arch Photogram Rem Sens Spatial Inf Sci 2018;42:2603-8.
  • [29] Aimaiti Y, Yamazaki F, Liu W, Kasimu A. Monitoring of land-floor deformation in the Karamay oilfield, Xinjiang, China, the use of SAR interferometry. Appl Sci 2017;7(8):772.
  • [30] Yao G, Ke CQ, Zhang J, Lu Y, Zhao J, Lee H. Surface deformation tracking of Shanghai supported ENVISAT ASAR and Sentinel-1A statistics. Environ Earth Sci 2019; 78(6):225.
  • [31] Liu J, Ma F, Li G, Guo J, Wan Y, Song Y. Evolution assessment of mining subsidence characteristics using SBAS and PS interferometry in Sanshandao gold mine, China. Rem Sens 2022;14(2):290.
  • [32] Hilley GE, Bürgmann R, Ferretti A, Novali F, Rocca F. Dynamics of slow-shifting landslides from everlasting scatterer evaluation. Science 2004;304(5679):1952-5.
  • [33] Zhu Y, Zhou S, Zang D, Lu T. Monitoring of surface subsidence of the mining area supported sbas. Int Arch Photogram Rem Sens Spatial Inf Sci 2018;42:3.
  • [34] Zheng M, Deng K, Fan H, Du S. Monitoring and analysis of surface deformation in mining area based on InSAR and GRACE. Rem Sens 2018;10(9):1392.
  • [35] Pawluszek-Filipiak K, Borkowski A. Integration of DInSAR and SBAS techniques to training session mining-related deformations using sentinel-1 data: the case study of rydułtowy mine in Poland. Rem Sens 2020;12(2):242.
  • [36] Zhang L, Ge D, Guo X, Liu B, Li M, Wang Y. InSAR tracking floor deformation triggered with the aid of using underground mining using sentinel-1 images. Proceedings Int Association of Hydrological Sci 2020;382:237-40.
  • [37] Anjasmara IM, Yulyta SA, Cahyadi MN, Khomsin, Taufik M, Jaelani LM. Land subsidence evaluation in Surabaya city location using statistical InSAR method. 1. In: AIP conference proceedings, vol. 1987. AIP Publishing LLC; 2018. p. 020071.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ac5ae7c-9e24-4c2f-8091-d3d7620e8a28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.