PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interaction of sulfuric acid with dolomite (104) surface and its impact on the adsorption of oleate anion: a DFT study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sulfuric acid (H2SO4) is a specific depressor for apatite rather than for dolomite. The H2SO4treated dolomite can still be floated effectively by oleate. However, the role of H2SO4 in the adsorption of oleate onto dolomite surface remains unclear. In this work, density functional theory calculations were conducted to probe the interactions among sulfate anion (SO42−), oleate anion and the dolomite surface. The adsorption behaviors of SO42− anion onto the perfect and CO3-defect dolomite surfaces were compared. Such results show that SO42−anion could only adsorb onto the defective dolomite surface, where it bonded with a Ca atom. The remaining Ca and Mg atoms at the defect site could further react with the oleate anion, generating new Ca/Mg–O ionic bond. In this regard, oleate and SO42−anions may both present on the dolomite surface. This phenomenon accounts for the flotation of H2SO4-treated dolomite.
Słowa kluczowe
Rocznik
Strony
34--42
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093
Bibliografia
  • ARIFFIN, A.A., BAKAR, J., TAN, C.P., RAHMAN, R.A., KARIM, R., LOI, C.C., 2009. Essential fatty acids of pitaya (dragon fruit) seed oil. Food Chem. 114, 561-564.
  • CAO, Q., ZOU, H., CHEN, X., WEN, S., 2019. Flotation selectivity of N-hexadecanoylglycine in the fluorapatite–dolomite system. Miner. Eng. 131, 353-362.
  • CHANTURIYA, V., MASLOBOEV, V., MAKAROV, D., MAZUKHINA, S., NESTEROV, D., MENSHIKOV, Y., 2011. Artificial geochemical barriers for additional recovery of non-ferrous metals and reduction of ecological hazard from the mining industry waste. Environ. Lett. 46, 1579-1587.
  • CHEN, Y., FENG, Q., ZHANG, G., LIU, D., LIU, R., 2018. Effect of Sodium Pyrophosphate on the Reverse Flotation of Dolomite from Apatite. Minerals. 8, 278.
  • F.M. HOSSAIN, B.Z. DLUGOGORSHI, E.M.K., I.V. BELOVA, G.E. MURCH, 2011. First-principles study of the electronic, optical and bonding properties in dolomite. Comput. Mater. Sci. 50, 1037-1042.
  • FRANCIS, G.P., PAYNE, M.C., 1990. Finite basis set corrections to total energy pseudopotential calculations. J. Phys. Condens. Matter. 2, 4395-4404.
  • HORTA, D., DE MELLO MONTE, M.B., DE SALLES LEAL FILHO, E.E., 2016. The effect of dissolution kinetics on flotation response of apatite with sodium oleate. Int. J. Miner. Process. 146, 97-104.
  • JIAO, F., WU, J., QIN, W., WANG, X., LIU, R., 2016. Interactions of tert dodecyl mercaptan with sphalerite and effects on its flotation behavior. Colloids Surfaces A Physicochem. Eng. Asp. 506, 104-113.
  • KARLKVIST, T., PATRA, A., RAO, K.H., BORDES, R., HOLMBERG, K., 2015. Flotation selectivity of novel alkyl dicarboxylate reagents for apatite–calcite separation. J. Colloid Interface Sci. 445, 40-47.
  • KONDRATEV, S.A., BAKSHEEVA, I.I., SEMYANOVA, D.V., 2017. Collectability and Selectivity of Physical Adsorption of Carboxylic Acids in Flotation. J. Min. Sci. 53, 1116-1123.
  • KUSHCH, S.D., KUYUNKO, N.S., NAZAROV, R.S., TARASOV, B.P., 2011. Hydrogen-generating compositions based on magnesium. Int. J. Hydrogen Energy. 36, 1321-1325.
  • KYLLONEN, H., PIRKONEN, P., HINTIKKA, V., PARVINEN, P., GRONROOS, A., SEKKI, H., 2004. Ultrasonically aided mineral processing technique for remediation of soil contaminated by heavy metals. Ultrason Sonochem. 11, 211-216.
  • LIU, X., LI, C., LUO, H., CHENG, R., LIU, F., 2017a. Selective reverse flotation of apatite from dolomite in collophanite ore using saponified gutter oil fatty acid as a collector. Int. J. Miner. Process. 165, 20-27.
  • LIU, X., LUO, H., CHENG, R., LI, C., ZHNAG, J., 2017b. Effect of citric acid and flotation performance of combined depressant on collophanite ore. Miner. Eng. 109, 162-168.
  • LU, Y., DRELICH, J., MILLER, J.D., 1998. Oleate adsorption at an apatite surface studied by ex-situ FTIR internal reflection spectroscopy. J. Colloid Interface Sci.202, 462-476.
  • MATHUR, S., MOUDGIL, B.M., 1994. Application of infrared spectroscopy in solid—solid separation processes. Colloids Surfaces A Physicochem. Eng. Asp. 93, 137–147.
  • MATIS, K.A., ZOUBOULIS, A.I., 2001. Flotation techniques in water technology for metals recovery: The impact of speciation. Sep Sci Technol. 36, 3777-3800.
  • MICHAUX, B., RUDOLPH, M., REUTER, M.A., 2018. Challenges in predicting the role of water chemistry in flotation through simulation with an emphasis on the influence of electrolytes. Miner. Eng. 125, 252-264.
  • PERDEW, J.P., BURKE, K., ERNERHOF, M., 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865.
  • PERDEW, J.P., ZUNGER, A., 1981. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B. 23, 5048.
  • PERES, A.E.C., GUIMARAES, R.C., ARAUGO, A.C., 2005. Reagents in igneous phosphate ores flotation. Miner. Eng. 18, 199-204.
  • PRADIP, B, R., 2003. Molecular modeling and rational design of flotation reagents. Int. J. Miner. Process. 72, 95-110.
  • PRADIP, RAI, B., RAO, T.K., KRISHNAMUTHY, S., VETRIVEL, R., MIELCZARSKI, J., CASES, J.M., 2002. Molecular Modeling of Interactions of Alkyl Hydroxamates with Calcium Minerals. J. Colloid Interface Sci. 256, 106-113.
  • QINBO, C., BIN, L., SHUMING, W., JINHUA, C., 2017. Influence of Synergistic Effect Between Dodecylamine and Sodium Oleate on Improving the Hydrophobicity of Fluorapatite. Physicochem. Probl. Miner. Process. 53, 42-56.
  • RAI, B., P, SATHITH, PRADIP, 2008. Molecular Modeling Based Design of Selective Depressants for Beneficiation of Dolomitic Phosphate Ores, in XXIV International Mineral Processing Congress, (Dianzuo Wang, Chuanyao Sun, Fuliang Wang, Licheng Zhang, Long Han, Eds.), Beijing: Science Press,pp. 1518-1525.
  • RAI, B., PRADIP, 2012. Rational Design of Selective Industrial Performance Chemicals based on Molecular Modelling Computations, CRC Press.
  • RUAN, Y., HE, D., CHI, R., 2019. Review on Beneficiation Techniques and Reagents Used for Phosphate Ores. Minerals. 9, 253.
  • SARVARAMINI, A., LARACHI, F., HART, B., 2016. Collector attachment to lead-activated sphalerite – Experiments and DFT study on pH and solvent effects. Appl. Surf. Sci. 367, 459-472.
  • SEGALL, M., LINDAN, P.J., PROBERT, M.A., PICHARD, C.,HASNIP, P., CLARK, S., PAYNE, M., 2002. Firstprinciples simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter. 14, 2717.
  • TEMEL, H.A., 2015. Removal of Gangue Minerals Containing Major Elements from Karlıova–Derinçay (Bingöl) Lignite Using a Reverse Flotation Method. JOM. 67, 3002-3009.
  • WAGN, X., NGUYEN, A.V., MILLER, J.D., 2006. Selective attachment and spreading of hydroxamic acid–alcohol collector mixtures in phosphate flotation. Int. J. Miner. Process. 78, 122-130.
  • YU, J., GE, Y., GUO, X., GUO, W., 2016. The depression effect and mechanism of NSFC on dolomite in the flotation of phosphate ore. Sep. Purif. Technol. 161, 88-95.
  • XIAOJUN, X., KELEBEK, Ş., 2000. Activation of xanthate flotation of pyrite by ammonium salts following it's depression by lime. Dev. Miner. Process. 13, pp. C8b-43-C48b-50.
  • ZOU, H., CAO, Q., LIU, D., YU, X., LAI, H., 2019. Surface Features of Fluorapatite and Dolomite in the Reverse Flotation Process Using Sulfuric Acid as a Depressor. Minerals. 9, 33.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ac3b307-5c45-4a05-b44b-fafdfdbfe6a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.