PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of a pulsed magnetic field on selected polymer implant materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Physiotherapy with the use of pulsed magnetic fields is one of the methods of activating the processes of bone healing and regeneration. Exposing materials serving as membranes in guided bone regeneration (GBR) or guided tissue regeneration (GTR) to magnetic fields is an effective model that allows to monitor changes in the material under the influence of the magnetic field. Methods: Materials engineering methods were used to verify the extent of material degradation resulting from magnetic field exposure in an aqueous environment. Changes in surface morphology were observed under an optical microscope and a scanning electron microscope (SEM). Changes in surface wettability were analysed in relation to the direct contact angle. Chemical structural changes were verified with the use of infrared spectroscopy (FTIR-ATR). Results: The PCL-based membrane materials underwent relatively moderate surface degradation (altered contact angle, changes in surface morphology), but the absence of observable FTIR-ATR spectral shifts evidenced material stability under the influence of magnetic field. More extensive degradation processes were observed in the case of PLDLA-based materials, whose surface character changed from hydrophilic to hydrophobic. The spectra revealed enhanced intensity of the chain terminal groups, provided that modifiers (nanometric SiO2 and TCP (water reservoir)) were present in the polymer matrix. Conclusions: The extent degradation in the polymer membrane was primarily dependent on the presence of aqueous environment, while the influence of the magnetic field on the analysed membrane materials was negligible. Therefore, GBR/GTR membrane implants can be considered to remain stable during rehabilitation with the use of alternating magnetic field.
Rocznik
Strony
87--96
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • University of Life Sciences in Lublin, Faculty of Veterinary Medicine, Department and Clinic of Animal Surgery, Lublin, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, Kraków, Poland
  • University of Life Sciences in Lublin, Faculty of Veterinary Medicine, Department and Clinic of Animal Surgery, Lublin, Poland
  • University of Life Sciences in Lublin, Faculty of Veterinary Medicine, Department and Clinic of Animal Surgery, Lublin, Poland
Bibliografia
  • [1] BLOKHUIS T.J., ARTS J.J., Bioactive and osteoinductive bone graft substitutes: definitions, facts and myths, Injury, 2011, 42, Suppl 2, 26–29, DOI: 10.1016/j.injury.2011.06.010.
  • [2] CURY C.P.H., SATYANARAYANA K.G., WYPYCH F., Nanocomposites: synthesis, structure, properties and new application opportunities, Materials Research, 2009, 12(1), 1–39.
  • [3] DAISHI C., BLANCHARD R., FOX K., PIVONKA P., PIRGOVA E., The application of Pulsed Electromagnetic Fields (PEMFs) for Bone Fracture Repair: Past and Perspective Findings, Ann. Biomed. Eng., 2018, 4, 525–542.
  • [4] DIMITRIOU R., BABIS G.C., Biomaterial osseointergation enhancement with biophysical stimulation, J. Musculoskelet. Neuronal. Interact., 2007, 7, 253–265.
  • [5] FRATZL P., Biomimetic materials research: what can we really learn from nature’s structural materials?, J. Roy. Soc. Interface, 2007, 22, 4(15), 637–642, DOI: 10.1098/rsif.2007.0218.
  • [6] GAYNOR J.S., HAGBERG S., GURFEIN B.T., Veterinary applications of pulsed electromagnetic field therapy, Res. Vet. Sci., 2018, 119, 1-8.
  • [7] GRUBER R., VARGA F., FISCHER M.B., WATZEK G., Platelets stimulate proliferation of bone cells: involvement of plateletderived growth factor, microparticles and membranes, Clin. Oral Implants Res., 2002, 13, 529–535.
  • [8] IÑIGUEZ-FRANCO F., AURAS R., RUBINO M., SELKE S., Effect of nanoparticles on the hydrolytic degradation of PLA-nanocomposites by water-ethanol solutions, Polymer Degr. Stabil., 2017, 146, DOI: 10.1016/j.polymdegradstab.2017.11.004.
  • [9] KEWING L., ONG L.K., MIN YUN B., WHITE J.B., New biomaterials for orthopedic implants, Orthop. Res. and Rew., 2015, 7, 107–130.
  • [10] MOHAMMANDI R., FARAJI D., ALEMI H., MAKARIZADEK A., Pulsed electromagnetic fields accelerate functional recovery of transected sciatic nerve bridged by chitosan conduit: An animal study, Int. J. Surg., 2014, 12, 1278–1285.
  • [11] PINA S., FERREIRA J.M.F., Bioresorbable plates and screws for Clinical Applications. A review, J. Healthcare Eing., 2012, 3(2), 243–260.
  • [12] RAPACZ-KMITA A., STODOLAK-ZYCH E., DUDEK M., SZARANIEC B., RÓŻYCKA A., MOSIAŁEK M., Degradation of nanoclay-filledpolylactide composites, Physicochem. Probl. Mi., 2013, 49, 91–99.
  • [13] RAPACZ-KMITA A., STODOLAK-ZYCH E., SZARANIEC B., GAJEK M., DUDEK P., Effect of clay mineral on the accelerated hydrolytic degradation of polylactide in the polymer/clay nanocomposites, Mater. Lett., 2015, 146, 73–76.
  • [14] SAHOO N.G., PAN Y.Z., LI L., BIN HE C., Nanocomposites for Bone Tissue Regeneration, Nanomedicine, 2013, 8(4), 639–653.
  • [15] SIEROŃ A., MUCHA R., PASEK J., Magnetherapy. Physiotherapy in practice (in Polish), 2006, 3, 29–32.
  • [16] STODOLAK-ZYCH E., ŁUSZCZ A., MENASZEK E., ŚCISŁOWSKA--CZARENCKA A., Resorbable polymer membranes for medical applications, J. Biomim. Biomater. Tissue Eng., 2014, 19, 99–108.
  • [17] STODOLAK-ZYCH E., SZUMERA M., BŁAŻEWICZ M., Osteoconductive nanocomposite materials for bone regeneration, Mat. Sci. Forum, 2013, 730–732, 38–43.
  • [18] VERONESI F., FINI M., SARTORI M., PARRILLI A., MARTINI L., TSCHON M., Pulsed electromagnetic fields and platelet rich plasma alone and combined for the treatment of wear-mediated periprosthetic osteolysis: An in vivo study, Acta Biomater., 2018, 77, 106–115.
  • [19] WALDORFF E.I., ZHANG N., RYABY J.T., Pulsed electromagnetic field applications: A corporate perspectives, J. Orthop. Transl., 2017, 9, 60–68.
  • [20] YUAN H., FERNANDES H., HABIBOVIC P., DE BOER J., BARRADAS A.M.C., DE RUITER A., WALSH W.R., VAN BLITTERSWIJK C.A., DE BRUIJN J.D., Osteoinductive ceramics as a synthetic alternative to autologous bone grafting, P. Natl. Acad. Sci. USA, 2010, 3, 107(31). 13614–13619, DOI: 10.1073/pnas.1003600107.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ab8fba1-4ce8-4d7b-bae4-f4042576bac6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.