Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Solid Mechanics Conference (SolMech 2018) (41 ; 27–31.08. 2018 ; Warsaw, Poland)
Języki publikacji
Abstrakty
The probabilistic solutions of the elastic stretched beam are studied under the excitation of Kanai–Tajimi ground motion. Finite difference scheme is adopted to formulate the nonlinear multi-degree-of-freedom system about the random vibration of the beam. The state-space-split is employed to make the high-dimensional Fokker–Planck–Kolmogorov equation reduced to 4-dimensional Fokker–Planck–Kolmogorov equations which are solved by the exponential polynomial closure method for the probabilistic solutions of the system responses. The rules for selecting the state variables are proposed in order to reduce the dimensionality of Fokker–Planck–Kolmogorov equation by the state-space-split method. The numerical results obtained by the state-space-split and exponential polynomial closure method, Monte Carlo simulation method, and equivalent linearization method are presented and compared to show the computational efficiency and numerical accuracy of the state-space-split and exponential polynomial closure method in analyzing the probabilistic solutions of thestrongly nonlinear stretched beam systems formulated by a finite difference scheme and excited by the Kanai–Tajimi ground motion.
Czasopismo
Rocznik
Tom
Strony
433--457
Opis fizyczny
Bibliogr. 54 poz.
Twórcy
autor
- Department of Civil and Environmental Engineering, University of Macau,Macau SAR, P. R. China
autor
- Department of Civil and Environmental Engineering, University of Macau, Macau SAR, P. R. China
autor
- Department of Civil and Environmental Engineering, University of Macau, Macau SAR, P. R. China
Bibliografia
- 1. R.E. Herbert, Random vibrations of a nonlinear elastic beam, Journal of the Acoustical Society of America, 36, 2090–2094, 1964.
- 2. R.E. Herbert, On the stresses in a nonlinear beam subject to random excitation, International Journal of Solids and Structures, 1, 235–242, 1965.
- 3. J. Fang, I. Elishakoff, R. Caimi, Nonlinear response of a beam under stationary random excitation by improved stochastic linearization method, Applied Mathematical Modelling, 19, 106–111, 1995.
- 4. G.K. Er, The probabilistic solutions of some nonlinear stretched beams excited by filtered white noise, IUTAM Symposium on Multiscale Problems in Stochastic Mechanics 2012, C. Proppe [ed.], Procedia IUTAM Vol. 6, pp. 141–150, Elsevier, 2013.
- 5. G.K. Er, V.P. Iu, K. Wang, H.E. Du, Probabilistic Solutions of the Stretched Beam Systems Formulated by Finite Difference Scheme and Excited by Gaussian White Noise, IUTAM Symposium on Intelligent Multibody Systems–Dynamics, Control, Simulation 2017, E. Zahariev, J. Cuadrado [eds.], IUTAM book series Vol. 33, 99–114, Springer, Berlin, 2019.
- 6. T.T. Soong, Random Differential Equations in Science and Engineering, Academic Press, New York, 1973.
- 7. K. Sobczyk, Stochastic Differential Equations with Application to Physics and Engineering, Kluwer, Boston, 1991.
- 8. Y.K. Lin, G.Q. Cai, Probabilistic Structural Dynamics, McGraw-Hill, New York, 1995.
- 9. H. Risken, The Fokker–Planck Equation, Methods of Solution and Applications, Springer, Berlin, 1989.
- 10. C.W. Gardiner, Stochastic Methods: a Handbook for the Natural and Social Sciences, Berlin, Springer, 2009.
- 11. A. Masud, L.A. Bergman, Solution of the four dimensional Fokker-Planck equation: still a challenge, Proceedings of ICOSSAR’2005, Rotterdam, Millpress Science Publishers, pp. 1911–1916, 2005.
- 12. Y. Sun, M. Kumar, Numerical solution of high dimensional stationary Fokker–Planck equations via tensor decomposition and Chebyshev spectral differentiation, Computers and Mathematics with Applications, 67, 1961–1977, 2014.
- 13. N. Wiener, The average of an analytic functional, Proceedings of the National Academy of Sciences of the United States of America, 7, 9, 253–260, 1921.
- 14. R.P. Feynman, Space-time approach to non-relativistic quantum mechanics, Reviews of Modern Physics, 20, 367–387, 1948.
- 15. I.A. Kougioumtzoglou, P.D. Spanos, An analytical Wiener path integral technique for non-stationary response determination of nonlinear oscillators, Probabilistic Engineering Mechanics, 28, 125–131, 2012.
- 16. I.A. Kougioumtzoglou, A Wiener path integral solution treatment and effective material properties of a class of one-dimensional stochastic mechanics problems, ASCE Journal of Engineering Mechanics, 143, 6, 04017014, 2017.
- 17. I.A. Kougioumtzoglou, P.D. Spanos, Response and first-passage statistics of non-linear oscillators via a numerical path integral approach, ASCE Journal of Engineering Mechanics, 139, 9, 1207–1217, 2013.
- 18. C. Bucher, A.D. Alberto Di Matteo, M.D. Paola, A. Pirrotta, First-passage problem for nonlinear systems under Lvy white noise through path integral method, Nonlinear Dynamics, 85, 1445–1456, 2016.
- 19. P. Alevras, D. Yurchenko, GPU computing for accelerating the numerical path integration approach, Computers and Structures, 171, 46–53, 2016.
- 20. R.L. Stratonovich, Topics in the Theory of Random Noise, vol. 1, Gordon and Breach, New York, 1963.
- 21. W.Q. Zhu, Stochastic averaging methods in random vibration, Applied Mechanical Review, 41, 5, 189–199, 1988.
- 22. S.H. Crandall, Perturbation techniques for random vibration of nonlinear systems, Journal of the Acoustical Society of America, 35, 1700–1705, 1963.
- 23. S.A. Assaf, L.D. Zirkle, Approximate analysis of non-linear stochastic systems, International Journal of Control, 23, 477–492, 1976.
- 24. G. Muscolino, G. Ricciardi, M. Vasta, Stationary and non-stationary probability density function for non-linear oscillators, International Journal of Non-Linear Mechanics, 32, 6, 1051–1064, 1997.
- 25. L.D. Lutes, Approximate technique for treating random vibration of hysteretic systems, Journal of the Acoustical Society of America, 48, 299–306, 1970.
- 26. G.Q. Cai, Y.K. Lin, A new approximate solution technique for randomly excited non- linear oscillators, International Journal of Non-Linear Mechanics, 23, 409–420, 1988.
- 27. K. Sobczyk, J. Trebicki, Maximum entropy principle in stochastic dynamics, Probabilistic Engineering Mechanics, 5, 102–110, 1990.
- 28. J.C. Whitney, Finite difference methods for the Fokker-Planck equation, Journal of Computational Physics, 6, 483–509, 1970.
- 29. R.S. Langley, A finite element method for the statistics of nonlinear random vibration, Journal of Sound and Vibration, 101, 41–54, 1985.
- 30. G.K. Er, An improved closure method for analysis of nonlinear stochastic systems, Nonlinear Dynamics, 17, 3, 285–297, 1998.
- 31. G.K. Er, The probabilistic solutions to nonlinear random vibrations of multi-degree-of- freedom systems, ASME Journal of Applied Mechanics, 67, 2, 355–359, 2000.
- 32. R.C. Booton, Nonlinear control systems with random inputs, IRE Transaction on Circuit Theory, CT-1, 1, 9–18, 1954.
- 33. T.K. Caughey, Response of a nonlinear string to random loading, ASME Journal of Applied Mechanics, 26, 341–344, 1959.
- 34. L. Socha, T.T. Soong, Linearization in analysis of nonlinear stochastic systems, Applied Mechanics Review, 44, 10, 399–422, 1991.
- 35. C. Proppe, H.J. Pradlwater, G.I. Schueller, Equivalent linearization and Monte Carlo simulation in stochastic dynamics, Probabilistic Engineering Mechanics, 18, 1–15, 2003.
- 36. N. Metropolis, S. Ulam, Monte Carlo method, Journal of the American Statistical Association, 14, 335–341, 1949.
- 37. N.J. Rao, J.D. Borwanker, D. Ramkrishna, Numerical solution of Ito integral equations, SIAM Journal of Control, 12, 1, 124–139, 1974.
- 38. C.J. Harris, Simulation of multivariable nonlinear stochastic systems, International Journal of Numerical Methods in Engineering, 14, 37–50, 1979.
- 39. J.L. Velasco, A. Bustos, F. Castejon, L.A. Fernandez, V. Martin-Mayor, A. Tarancon, ISDEP: Integrator of stochastic differential equations for plasmas, Computer Physics Communications, 183, 1877–1883, 2012.
- 40. W.F. Wu, Y.K. Lin, Cumulant-neglect closure for nonlinear oscillators under random parametric and external excitations, International Journal of Non-Linear Mechanics, 19, 349–362, 1984.
- 41. R.A. Ibrahim, A. Soundararajan, H. Heo, Stochastic response of non-linear dynamic systems based on a non-Gaussian closure, ASME Journal of Applied Mechanics, 52, 965– 970, 1985.
- 42. J.-Q. Sun, C.S. Hsu, Cumulant-neglect closure method for nonlinear systems under random excitations, ASME Journal of Applied Mechanics, 54, 649–655, 1987.
- 43. A.M. Hasofer, M. Grigoriu, A new perspective on the moment closure method, ASME Journal of Applied Mechanics, 62, 527–532, 1995.
- 44. Y.H. Yahui Sun, H. Hong, Y.G. Yang, J.Q. Sun, Probabilistic response of nonsmooth nonlinear systems under Gaussian white noise excitations, Physica A, 508, 111–117, 2018.
- 45. G.K. Er, Methodology for the solutions of some reduced Fokker-Planck equations in high dimensions, Annalen der Physik, 523, 3, 247–258, 2011.
- 46. G.K. Er, V.P. Iu, A new method for the probabilistic solutions of large-scale nonlinear stochastic dynamic systems, IUTAM Symposium on Nonlinear Stochastic Dynamics and Control, W.Q. Zhu, Y.K. Lin, G.Q. Cai [eds.], IUTAM Book Series Vol. 29, 25–34, Springer, Berlin, 2011.
- 47. G.K. Er, V.P. Iu, State-space-split method for some generalized Fokker–Planck–Kolmogorov equations in high dimensions, Physical Review E, 85, 6, 067701, 2012.
- 48. G.K. Er, Probabilistic solutions of some multi-degree-of-freedom nonlinear stochastic dynamical systems excited by filtered Gaussian white noise, Computer Physics Communications, 185, 1217–1222, 2014.
- 49. G.K. Er, V.P. Iu, K. Wang, S.S. Guo, Stationary probabilistic solutions of the cables with small sag and modeled as MDOF systems excited by Gaussian white noises, Nonlinear Dynamics, 85, 3, 1887–1899, 2016.
- 50. G.K. Er, V.P. Iu, Probabilistic solutions of simply-supported nonlinear plate excited by Gaussian white noise fully correlated in space, International Journal of Structural Stability and Dynamics, 17, 9, 1750097, 2017.
- 51. G.K. Er, K. Wang, V.P. Iu, Probabilistic solutions of the in-plane nonlinear random vibrations of shallow cable under filtered Gaussian white noises, International Journal of Structural Stability and Dynamics, 18, 4, 1850062, 2018.
- 52 Probabilistic solutions of a stretched beam. . .45752.W.A. Jiang, P. Sun, Z.W. Xia,Probabilistic solution of the vibratory energy harvesterexcited by Gaussian white noise, International Journal of Dynamics and Control,7, 1,167–177, 2019.53.
- 53 K. Kanai,Semi-empirical formula for the seismic characteristics ofground motion, Bul-letin of Earthquake Research Institute,35, 2, 309–325, University of Tokyo, 1957.
- 54.H. Tajimi,A statistical method of determining the maximum response ofa building struc-ture during an earthquake, Proceedings of Second World Conference on Earthquake En-gineering, 781–797, Tokyo, Japan, July 1960
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ab23fa8-1f2f-46b9-b9dc-310e37a64d80