PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

From slots to tubes: the influence of dimensionality on fracture dissolution models

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We briefly review the models of fracture dissolution process, discussing the experimental and numerical evidence showing that this phenomenon is inherently two-dimensional and hence cannot be accurately described by one-dimensional models. The physical reason for this incompatibility is that a dissolution front in a single rock fracture is potentially unstable to small variations in local permeability, leading to spontaneous formation of dissolution channels in the rock. This leads to a dramatic increase of fissure opening rates, which must be taken into account not only in the estimation of karstification times but also in the assessment of ground subsidence, dam collapse or toxic seepage risks.
Słowa kluczowe
Czasopismo
Rocznik
Strony
1556--1572
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
  • Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warszawa, Poland
Bibliografia
  • 1. Andre, B.J., and H. Rajaram (2005), Dissolution of limestone fractures by cooling waters: Early development of hypogene karst systems, Water Resour. Res. 41,1, 1-16, W01015, DOI: 10.1029/2004WR003331.
  • 2. Chadam, J., D. Hoff, E. Merino, P. Ortoleva, and A. Sen (1986), Reactive infiltration instabilities, IMA J. Appl. Math. 36,3, 207-221, DOI: 10.1093/imamat/36.3.207.
  • 3. Chaudhuri, A., H. Rajaram, and H. Viswanathan (2008), Alteration of fractures by precipitation and dissolution in gradient reaction environments: Computational results and stochastic analysis, Water Resour. Res. 44,10, W10410, DOI: 10.1029/2008WR006982.
  • 4. Chaudhuri, A., H. Rajaram, H. Viswanathan, G. Zyvoloski, and P. Stauffer (2009), Buoyant convection resulting from dissolution and permeability growth in vertical limestone fractures, Geophys. Res. Lett. 36,3, L03401, DOI: 10.1029/2008GL036533.
  • 5. Cheung, W., and H. Rajaram (2002), Dissolution finger growth in variable aperture fractures: Role of the tip-region flow field, Geophys. Res. Lett. 29,22, 32-1-32-4, DOI: 10.1029/2002GL015196.
  • 6. Detwiler, R.L., and H. Rajaram (2007), Predicting dissolution patterns in variable aperture fractures: Evaluation of an enhanced depth-averaged computational model, Water Resour. Res. 43,4, W04403, DOI: 10.1029/2006WR005147.
  • 7. Detwiler, R.L., R.J. Glass, and W.L. Bourcier (2003), Experimental observations of fracture dissolution: The role of Peclet number on evolving aperture variability, Geophys. Res. Lett. 30,12, 1648, DOI: 10.1029/2003GL 017396.
  • 8. Dijk, P., and B. Berkowitz (1998), Precipitation and dissolution of reactive solutes in fractures, Water Resour. Res. 34,3, 457-470, DOI: 10.1029/97WR03238.
  • 9. Dreybrodt, W. (1990), The role of dissolution kinetics in the development of karst aquifers in limestone: a model simulation of karst evolution, J. Geol. 98,5, 639-655, DOI: 10.1086/629431.
  • 10. Dreybrodt, W. (1996), Principles of early development of karst conduits under natural and man-made conditions revealed by mathematical analysis of numerical models, Water Resour. Res. 32,9, 2923-2935, DOI: 10.1029/96WR01332.
  • 11. Durham, W.B., W.L. Bourcier, and E.A. Burton (2001), Direct observation of reactive flow in a single fracture, Water Resour. Res. 37,1, 1-12, DOI: 10.1029/2000WR900228.
  • 12. Flamache, A. (1895), Sur la formation des grottes et des vallees souterraines, Bull. Soc. Belge Géol. Paléontol. Hydrol. 9, 355-367 (in French).
  • 13. Gouze, P., C. Noiriel, C. Bruderer, D. Loggia, and R. Leprevost (2003), X-ray tomography characterization of fracture surfaces during dissolution, Geophys. Res. Lett. 30,5, 1267, DOI: 10.1029/2002GL016755.
  • 14. Groves, C.G., and A.D. Howard (1994), Minimum hydrochemical conditions allowing limestone cave development, Water Resour. Res. 30,3, 607-615, DOI: 10.1029/93WR02945.
  • 15. Hanna, R.B., and H. Rajaram (1998), Influence of aperture variability on dissolutional growth of fissures in karst formations, Water Resour. Res. 34,11, 2843-2853, DOI: 10.1029/98WR01528.
  • 16. Hinch, E.J., and B.S. Bhatt (1990), Stability of an acid front moving through porous rock, J. Fluid Mech. 212, 279-288, DOI: 10.1017/S0022112090001963.
  • 17. Hoefner, M.L., and H.S. Fogler (1988), Pore evolution and channel formation during flow and reaction in porous media, AIChE J. 34,1, 45-54, DOI: 10.1002/aic.690340107.
  • 18. Lyell, C. (1830), Principles of Geology, John Murray, London.
  • 19. Motyka, J., and Z. Wilk (1984), Hydraulic structure of karst-fissured Triassic rocks in the vicinity of Olkusz (Poland), Kras i Speleologia 14,5, 11-24.
  • 20. Oltéan, C., F. Golfier, and M.A. Buès (2013), Numerical and experimental investigation of buoyancy-driven dissolution in vertical fracture, J. Geophys. Res. 118,5, 2038-2048, DOI: 10.1002/jgrb.50188.
  • 21. Ortoleva, P., J. Chadam, E. Merino, and A. Sen (1987), Geochemical self-organization II: The reactive-infiltration instability, Am. J. Sci. 287, 1008-1040, DOI: 10.2475/ajs.287.10.1008.
  • 22. Paillet, F.L., A.E. Hess, C.H. Cheng, and E. Hardin (1987), Characterization of fracture permeability with high-resolution vertical flow measurements during borehole pumping, Groundwater 25,1, 28-40, DOI: 10.1111/j.1745-6584.1987.tb02113.x.
  • 23. Palmer, A.N. (1991), Origin and morphology of limestone caves, Geol. Soc. Am. Bull. 103,1, 1-21, DOI: 10.1130/0016-7606(1991)103〈0001:OAMOLC〉2.3.CO;2.
  • 24. Phillips, O.M. (1990), Flow-controlled reactions in rock fabrics, J. Fluid Mech. 212, 263-278, DOI: 10.1017/S0022112090001951.
  • 25. Plummer, L.N., and T.M.L. Wigley (1976), The dissolution of calcite in CO2-saturated solutions at 25°C and 1 atmosphere total pressure, Geochim. Cosmochim. Ac. 40,2, 191-202, DOI: 10.1016/0016-7037(76)90176-9.
  • 26. Rajaram, H., W. Cheung, and A. Chaudhuri (2009), Natural analogs for improved understanding of coupled processes in engineered Earth systems: examples from karst system evolution, Curr. Sci. India. 97,8, 1162-1176.
  • 27. Shaw, T.R. (2000), Views on cave formation before 1900. In: A.B. Klimchouk, D.C. Ford, A.N. Palmer, and W. Dreybrodt (eds.), Speleogenesis: Evolution of Karst Aquifers, National Speleological Society, Huntsville, 21-29.
  • 28. Sherwood, J.D. (1987), Stability of a plane reaction front in a porous medium, Chemical Eng. Sci. 42,7, 1823-1829, DOI: 10.1016/0009-2509(87)80187-2.
  • 29. Steefel, C.I., and A.C. Lasaga (1990), Evolution of dissolution patterns: permeability change due to coupled flow and reaction. In: D. Melchior, and R.L. Bassett (eds.), Symp. American Chemical Society” Chemical Modeling in Aqueous Systems II”, 25 September 1988, Los Angeles, USA, 212-225.
  • 30. Steefel, C.I., and A.C. Lasaga (1994), A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems, Am. J. Sci. 294,5, 529-592, DOI: 10.2475/ajs.294.5.529.
  • 31. Szymczak, P., and A.J.C. Ladd (2004), Microscopic simulations of fracture dissolution, Geophys. Res. Lett. 31,23, L23606, DOI: 10.1029/2004GL 021297.
  • 32. Szymczak, P., and A.J.C. Ladd (2006), A network model of channel competition in fracture dissolution, Geophys. Res. Lett. 33,5, L05401, DOI: 10.1029/2005 GL025334.
  • 33. Szymczak, P., and A.J.C. Ladd (2009), Wormhole formation in dissolving fractures, J. Geophys. Res. 114,B6, B06203, DOI: 10.1029/2008JB006122.
  • 34. Szymczak, P., and A.J.C. Ladd (2011a), The initial stages of cave formation: Beyond the one-dimensional paradigm, Earth Planet. Sci. Lett. 301,3-4, 424-432, DOI: 10.1016/j.epsl.2010.10.026.
  • 35. Szymczak, P., and A.J.C. Ladd (2011b), Instabilities in the dissolution of a porous matrix, Geophys. Res. Lett. 38,7, L07403, DOI: 10.1029/2011GL046720.
  • 36. Szymczak, P., and A.J.C. Ladd (2012), Reactive-infiltration instabilities in rocks. Fracture dissolution, J. Fluid Mech. 702, 239-264, DOI: 10.1017/jfm.2012.174.
  • 37. Thirria, M.E. (1830), Notice sur le terrain jurassique du département de la Haute-Saône et sur quelques grottes. In: Mémoires de la Société d’histoire naturelle de Strasbourg, F.G. Levrault, Paris (in French).
  • 38. Trudgill, S.T. (2008), Limestone landforms 1890-1965. In: T.P. Burt, R.J. Chorley, D. Brunsden, N.J. Cox, and A.S. Goudie (eds.), The History of the Study of Landforms or the Development of Geomorphology, Geol. Soc., London, 107-125.
  • 39. Weyl, P.K. (1958), The solution kinetics of calcite, J. Geol. 66,2, 163-176, DOI: 10.1086/626492.
  • 40. White, W.B. (1977), Role of solution kinetics in the development of karst aquifers. Karst hydrogeology, Mem. Int. Assoc. Hydrogeol. 12, 503-517.
  • 41. White, W.B., and J. Longyear (1962), Some limitations on speleogenetic speculation imposed by the hydraulics of groundwater flow in limestone, Nittany Grotto Newslett. 10, 155-167.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9ab02e66-959a-4427-9925-ee1ccae6a909
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.