Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In comparison with low carbon steels, there is increased interest in the use of aluminium-based alloys as materials for the manufacture of welded structures rolling stock of railway transport. During friction stir welding aluminium-based alloy, against the background of the analysis structural transformations, issues of development hardening processes are considered. Under conditions of existence, a temperature gradient at zone of weld formation, shown degree approximation alloy to the conditions of superplastic flow and influence from presence particles of the second phase on grain size of matrix is estimated. Evaluation of the separate influence grain size of matrix and state of solid solution at total hardness of the weld showed dependence of their contributions on temperature of hot plastic deformation. As the temperature of plastic deformation of alloy at area of the weld increases, contribution to the total hardness from grain size increase and on state of the solid solution decreases.
Rocznik
Tom
Strony
181--191
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
- Dnipro National University of Railway Transport Named Academician V.Lazaryan, Lazaryan St. 2, Dnipro, Ukraine, 49010
autor
- Dnipro National University of Railway Transport Named Academician V.Lazaryan, Lazaryan St. 2, Dnipro, Ukraine, 49010
autor
- Engineering and Architecture Faculty Metallurgy and Materials Engineering Department, Nevsehir University, Nevsehir, Turkey
autor
- Dnipro National University of Railway Transport Named Academician V.Lazaryan, Lazaryan St.,2, Dnipro, Ukraine, 49010
autor
- Mechanical Engineering, Karabuk University, Karabük, Turkey
Bibliografia
- 1. Ding J., R. Carter, K. Lawless, et.al. 2006. „Friction stir welding flies high at NASA”. Ibid 3: 54-59.
- 2. Hovanski Yu., P. Upadhyay, J. Carsley, et.al. 2015. „High-Speed Friction-Stir Welding to Enable Aluminum Tailor-Welded Blanks”. The Journal of The Minerals, Metals & Materials Society 67: 1045-1053. ISSN: 1047-4838. DOI: https://doi.org/10.1007/s11837-015-1384-x.
- 3. MST Technology Co., LTD. 2020. „Friction Stir Welding Applied To Rail”. Available at: https://www.aee-fsw.com/news/friction-stir-welding-applied-to-rail-33051203.html.
- 4. Bušić M., Z. Kožuh, D. Klobčar, I. Samardžić. 2016. “Friction stir welding (FSW) of aluminium foam sandwich panels”. Metalurgija 55(3): 473-476.
- 5. Miličić M., P. Gladović, R. Bojanić, T. Savković, N. Stojić. 2016. “Friction stir welding (FSW) process of copper alloys”. Metalurgija 55(1): 107-110.
- 6. Podržaj P., B. Jerman, D. Klobčar. 2015. “Welding defects at friction stir welding”. Metalurgija 54(2): 387-389.
- 7. Klobčar D., J. Tušek, M. Bizjak, V. Lešer. 2014. “Micro friction stir welding of copper electrical contacts”. Metalurgija 53(4): 509-512.
- 8. Thomas W.M., E.D. Nicholas, J.C. Needham, et. al. Patent 5,460,317. United States. Friction welding. Assignee The Welding Institute Cambridge, United Kingdom. Public date: 10.10.1995. Available at: https://patents.google.com/patent/US5460317A/en.
- 9. Yihua Xiao, Haifei Zhan, Yuantong Gu, et.al. 2017. “Modeling heat transfer during friction stir welding using a meshless particle method”. International Journal of Heat and Mass Transfer 104: 288-300. DOI: 10.1016/j.ijheatmasstransfer.2016.08.047.
- 10. Dalder E., J.W. Pastrnak, J. Engel, et.al. 2008. “Friction stir welding of thick-walled aluminum pressure vessels”. P. 40-44. Available at: https://app.aws.org/www/wj/2008/04/WJ_2008_04.pdf.
- 11. Mola K., A. Dziadon. 2008. “Formation of magnesium – eutectic mixture layered composite”. Archives of Foundry Engineering 8: 127-132.
- 12. Li X., A. Schert, M. Heilmaier, et. al. 2016. “The Al – rich Part of the Fe – Al Phase Diagram”. Journal of Phase Equilibria and Diffusion 37: 162-173.
- 13. Kematick R.J., C.E. Myers. 1992. “Thermodynamics and Phase Equilibria in the Al-Mn System”. Journal of Alloys and Compounds 178: 343-349.
- 14. Villegas J.F., J.V. Dominguez, G.V. Ochoa, et.al. 2017. “Thermo-mechanical modeling of friction-stir welding tool used in aluminum alloys joints”. Contemporary Engineering Sciences 10(34): 1659-1667. DOI: 10.12988/ces.2017.711156.
- 15. Li Dongxiao, Yang Xinqi, Cui Lei, et.al. 2015. “Investigation of stationary shoulder friction stir welding of aluminum alloy 7075-T651”. Journal of Materials Processing Technology 222: 391-398. DOI: 10.1016/j.jmatprotec.2015.03.036.
- 16. El-Sayed M.M, A.Y. Shash, T.S. Mahmoud, et. al. 2018. “Effect of friction stir welding parameters on the peak temperature and the mechanical properties of aluminum alloy 5083-O”. Improved Performance of Materials 72: 11-25. DOI: 10.1007/978-3-319-59590-0_2.
- 17. Dawes C.J. 1995. “An introduction to friction stir welding and its development”. Weld. and metal fabr. 1: 13-16.
- 18. Wilkinson D.S., C.H. Caceres. 1984. “On the mechanism of strain-enhanced grain grown during super plastic deformation”. Acta Met. 32: 1335-1345.
- 19. Partridge P.G., D.S. Mc Darmaid, A.W. Bowen. 1985. “A deformation model for anisotropic super plasticity in to phase alloys”. Acta Met. 33: 571-577.
- 20. Xiao-guo Wang, Qiu-shu Li, Rui-rui Wu, et al. 2018. “A Review on Superplastic Formation Behavior of Al Alloys”. Advances in Materials Science and Engineering 7606140. DOI: https://doi.org/10.1155/2018/7606140.
- 21. Ruano O., O.D. Sherby. 1988. “On constitutive equations for various diffusion-controlled creep mechanisms”. Revue de Physique Appliquee 23: 625-637.
- 22. Sakai G., Z. Horita, T.G. Langdon. 2005. “Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion”. Materials Science and Engineering A 393: 344-351.
- 23. Robiller G., Ch. Straβburger. 1969. “Zum Bauchinger–effektunlergiester stahle”. Materialprufung 1: 89-95.
- 24. Smith C.S. 1948. “Grains, phases and interfaces: an interpretation of microstructure”. Trans. ASME 175: 15-67.
- 25. Christ B.W., G.V. Smith. 1967. “Comparison of the hall-petch parameters of zone-refined iron determined by the grain size and extrapolation methods”. Acta Metallurgica 15: 809-816. DOI: https://doi.org/10.1016/0001-6160(67)90362-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9aae8e7a-87f4-4425-986a-87f817b615d3