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Three different approaches are formulated to obtain the bounds of the
effective elastic moduli of nanoparticle-reinforced composites based on the CSA and
the interface stress model. It is found that the effective bulk modulus can be obtained
by all three different approaches but the effective shear modulus can be obtained
only by the energy approach. The bounds of the effective bulk modulus coincide and
depend only on the interface bulk modulus, while those of the effective shear modulus
are distinct and depend on two interface elastic constants. Furthermore, limit analysis
discloses that the bounds of the effective bulk modulus of nanoparticles coincide but
deviate from the bulk modulus of particle in the classical case, and the bounds of
the effective shear modulus are distinct in contrast to the effective bulk modulus of
nanoparticles or both effective moduli of conventional composites.
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1. Introduction

Particle-reinforced composites are widely used as structural and func-
tional materials in engineering applications, where the effective elastic moduli of
these materials are of great importance in the design process. Classical methods
of predicting the effective elastic moduli of particle-reinforced composites may
be divided into two categories: exact solutions and bound solutions. In exact
solutions, most approaches are based on the famous Eshelby’s single inclusion
model [1], such as dilute concentration method [1], self-consistent method [2],
Mori–Tanaka method [3] and double-inclusion method [4]. Moreover, such exact
solutions depend in different ways on the elastic moduli, volume fraction, shape
and orientation of the constituents, and some of them even take into consider-
ations the spatial distribution of the constituents. In many cases, obtaining the
exact solution to the effective elastic moduli of particle-reinforced composites
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is a difficult task, while knowing the bounds is often enough in practical ap-
plications if the bounds are close enough. It is historically well-known that the
least restrictive bounds are given as the Voigt upper and Reuss lower bounds
due to the minimum potential and complementary energy theorems, respectively.
However, these two bounds are too far apart to use, so more restrictive bounds
are needed in practical situations. Hashin [5] proposed refined bounds of the
effective elastic moduli of particle-reinforced composites based on the compos-
ite sphere assemblage (CSA) model, where the composite is assumed to be an
assembly of composite spheres of various sizes. Similar bounds of the effective
elastic moduli of fiber-reinforced composites were also derived based on a simi-
lar composite cylinder assemblage (CCA) model [6]. In CSA and CCA models,
the spherical and cylindrical reinforcements are required to be distributed in
a particular way. To remove this limitation, wider but more general bounds were
proposed later as the Hashin–Shtrikman bounds [7]. It should be mentioned that
the bounds based on CSA and CCA models are the most restrictive ones that can
be given in terms of the volume fraction and elastic moduli of the constituents [8].
Therefore, they could be used to provide good estimates of the effective elastic
moduli of composite materials in some practical situations.

However, interface property is not included in all the classical methods men-
tioned above, so they do not admit the size-dependence of the reinforcements.
This is acceptable for conventional composites but would be inappropriate for
nanocomposites because it has been disclosed that the behavior of nanomateri-
als could differ from conventional materials dramatically [9–13]. For example, in
nanoparticle-reinforced composites, due to the large interface-to-volume ratio,
interface effect begins to play an important role in changing the constitutive
law seen in classical elasticity theory. To consider the interface effect, continu-
ities/discontinuities of field quantities (displacement, stress or traction) are as-
sumed to exist across the interface, which means four different types of interfaces
could be considered [14]: perfect interfaces, cohesive interfaces, elastic interfaces
and general interfaces. In classical methods, perfect interfaces are assumed as the
reinforcement and matrix are ideally bonded, so both displacement and traction
fields are continuous across the interface. For cohesive interfaces, the traction
field is continuous but a displacement jump exists across the interface, and the
displacement jump is related to the traction field at the interface. For instance, as
a typical example of cohesive interfaces, Hashin [15] proposed the linear spring
model where the displacement jump is proportional to the traction at the inter-
face. On the contrary, for elastic interfaces, the displacement field is continuous
but a traction jump exists across the interface. This means that the interface
deforms coherently with the bulk materials in the vicinity of the interface, but
the traction jump is related to an interface stress. Recently, generalized inter-
faces [16, 17] have been also investigated where both displacement and traction
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jumps are assumed to exist across the interface, and aforementioned cohesive
and elastic interfaces are only two limit cases of the generalized interfaces.

In this work, elastic interfaces are considered because the interest in this
subject has intensified in recent years for its importance in the properties of
nanomaterials. As mentioned above, the traction jump is related to an interface
stress for an elastic interface, so interface stress model should be proposed to
determine the behavior of the elastic interface. Due to the similarity between
surfaces and interfaces, surface/interface stress models are historically discussed
interchangeably. Shuttleworth [18] first described the surface effect as a re-
lationship of the deformation-dependent surface energy with the surface stress.
Gurtin and Murdoch [19] linked the surface/interface stress to the bulk stress
in the vicinity of the surface/interface by regarding it as a negligibly thin ob-
ject adhering to the underlying material without slipping. Miller and Shenoy
[20] introduced the concept of surface stiffness and demonstrated size-dependent
elastic property of nano-sized structure members. Dingreville et al. [21, 22]
proposed to formulate the surface/interface excess energy as a quadratic func-
tion of the surface/interface strain where a group of intrinsic surface/interface
property tensors could be defined. Based on the interface stress model, some
exact solutions to the effective elastic moduli of nanoparticle-reinforced compos-
ites are obtained. Sun et al. [23] investigated the interface effect on the effective
elastic property of nanoparticle-reinforced composites based on the CSA model,
but only the effective bulk modulus was considered. Chen et al. [24] derived
the effective bulk modulus of nanoparticle-reinforced composites with an inter-
face effect based on the construction of neutral composite spheres [25], which
is an analogous type of the CSA model. Meanwhile, the effective shear modu-
lus was obtained based on the generalized self-consistent method (GSCM) [26].
Duan et al. [27] formulated a micromechanical framework of obtaining the ef-
fective moduli of solids containing nano-inhomogeneity with the interface effect
by a strain concentration tensor inside the inhomogeneity and another strain
concentration tensor at the interface. The effective bulk modulus was obtained
in conjunction with CSA, GSCM and Mori–Tanaka method while the effective
shear modulus was obtained in conjunction with the GSCM and Mori–Tanaka
method.

Meanwhile, it is worthwhile to mention that an alternative approach to ac-
count for the interface effect in nanocomposites is to treat the interface as an
interphase, which is the interfacial region defined by the narrow volume sand-
wiched between two bulk materials. For a thin and compliant interphase, the
differences in the displacement and stress fields across the interphase have the
same features with those of the linear spring interface model [28]. On the other
hand, for a thin and stiff interphase, the differences in the displacement and stress
fields across the interphase have the same features with those of the interface
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stress model [29]. Therefore, the equivalence between interphase and interface ef-
fects on the effective elastic moduli of nanocomposites is assured when the link of
the properties between interface and interphase is provided [30]. When the inter-
face is treated as an interphase, the determination of the effective elastic moduli
of particle-reinforced composites becomes the coated or multi-coated inclusion
problem [31, 32] where all the interfaces between the interphase and other phases
are regarded as perfect interfaces. Furthermore, one can even consider the in-
terfaces as imperfect to derive the effective properties of multi-coated-inclusion
composites with the imperfect interface effect. For instance, Hervé-Luanco
[33, 34] proposed a new transfer matrix procedure with GSCM to obtain the
effective elastic moduli of n-layered inclusion based composites with the imper-
fect interface effect. Pham et al. [35] obtained the effective elastic moduli of
multi-coated-inclusion composites with the imperfect interface effect from the
minimum energy principles and near-interaction approximations following pre-
vious investigations on the effective thermal and electrical properties [36, 37].

However, bound solutions are quite rare in the literature about the effective
elastic moduli of nanoparticle-reinforced composites by considering the inter-
face effect based on the interface stress model. After the seminal Hashin’s CSA
bounds and Hashin-Shtrikman bounds of the effective elastic moduli of particle-
reinforced composites, tighter bounds [38–40] were constructed by considering
the microgeometries of composites with additional statistical information. Be-
sides the elastic properties and volume fractions of the component materials,
these tighter bounds contained the three-point correlation parameters involving
integrals of infinite medium Green’s functions, which extended the bound solu-
tions from two-component to multi-component composites. Unfortunately, the
interface effect is not considered in all these bound solutions so they are still only
applicable to conventional composites. As far as the authors have found in the lit-
erature, bound solutions to the effective elastic moduli of nanoparticle-reinforced
composites were only reported by Firooz et al. [16] and again included in their
recent review [41] based on Hashin’s CSA model by considering the general in-
terface effect. However, their bound solutions were mainly used for comparisons
with exact solutions without deep insight into the bounds themselves.

This work investigates the bounds of the effective elastic moduli of nano-
particle-reinforced composites based on the CSA and the interface stress model.
It should be noted that the general interface model deals with the traction jump
in the same way with the interface stress model, and the additional displacement
jump could be tackled similarly and less complicated mathematically than the
traction jump. Therefore, only the interface stress model is used in this wok but
it can be extended to the general interface model using similar strategies. Since
the interface stress model is the most popular and widely used in the literature
for the past decades, the fully explicit results in this work could be easier to use
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for other studies compared with the results presented as implicit equations in
other reports [16, 41]. This work is organized as follows. In Section 2, the solution
to the elastic field is elaborated as the boundary value problem in the theory of
elasticity based on the CSA and interface stress model, which is then used to
derive the bounds of the effective elastic moduli by three different approaches.
Closed-form solutions are presented in Section 3 as well as the validations with
other theoretical and experimental results. In Section 4, the influences of interface
effect and size of nanoparticles on the bounds of the effective elastic moduli of
nanoparticle-reinforced composites are discussed in detail. The limit analysis is
performed on the bounds of the effective elastic moduli of nanoparticle-reinforced
composites when the particle concentration is extremely small or large. Some
unexpected results are found which may be unnoted in the literature.

2. Methodology

For completeness, the concept of Hashin’s CSA model is reviewed briefly
with the consideration of interface effect. The elastic field is formulated as the
boundary value problem in the theory of elasticity based on the CSA and the
interface stress model, which is then used to derive the bounds of the effective
elastic moduli by three different approaches.

2.1. Composite sphere assemblage (CSA) model

In Fig. 1a, the nanoparticle-reinforced composite is composed of an isotropic
matrix in which isotropic nano-sized spherical inhomogeneity is embedded. Ac-
cording to the CSA model, the original composite could be constructed by fill-
ing it with composite sphere elements which may diminish to an infinitesimal
size such that no matrix volume is left between the outer surfaces of composite
sphere elements. A typical composite sphere element is represented in Fig. 1b by
a spherical inhomogeneity of radius a concentric with a spherical matrix shell of
the outer radius b. The volumes of the inhomogeneity and matrix are Vi and Vm,
respectively. The interface between inhomogeneity and matrix is denoted by Γ.
For all composite sphere elements, the local volume fraction of inhomogeneity
is the same, which equals to the global volume fraction of the reinforcements
inside the original composite as f = (a/b)3. In this case, the outer radius b
in Fig. 1b is just an imaginary boundary and it should not enter the final so-
lution to the effective elastic moduli of nanoparticle-reinforced composites. It
follows that the particle-reinforced composite is macroscopically isotropic and
the effective elastic moduli are the same with those of each composite sphere
element [5]. Therefore, the derivations are directly performed on the composite
sphere element for convenience in the following.
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a) b)

Fig. 1. Composite sphere assemblage model of the nanoparticle-reinforced composite;
a) composite sphere assemblagem b) composite sphere element.

2.2. Field equations

In the composite sphere element, both the matrix and inhomogeneity are as-
sumed to be isotropic materials. Therefore, the constitutive relationship between
the stress and strain field is:

(2.1) σij = Cijklεkl = λεkkδij + 2µεij ,

where Cijkl is the stiffness tensor and Cijkl = λδijδkl + µ(δikδjl + δilδjk) in the
isotropic case with Lamé constants, λ and µ; δij is the Kronecker delta. The
second Lamé constant µ is also called the shear modulus, and the bulk modulus
is given as K = λ+ 2µ/3. In the following, the elastic moduli of the matrix and
inhomogeneity are denoted as (Km, µm) and (Ki, µi), respectively.

From continuum mechanics, the stress field in both the matrix and inho-
mogeneity is governed by the stress equilibrium condition without body forces
as:

(2.2) σij,j = 0.

Under small deformation hypothesis, the geometric relationship in both the
matrix and inhomogeneity between the displacement and strain field is:

(2.3) εij = 1
2(ui,j + uj,i).
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Combining Eqs. (2.1)–(2.3), the displacement field in both the matrix and inho-
mogeneity satisfies the following Lamé–Navier equation as:

(2.4) µui,jj + (λ+ µ)uj,ji = 0.

For convenience, Eq. (2.4) can be also written as:

(2.5) (1− 2ν)ui,jj + uj,ji = 0,

where ν is Poisson’s ratio. In the following, Poisson’s ratios of the matrix and
inhomogeneity are denoted as νm and νi, respectively.

2.3. Boundary conditions

The field equations aforementioned describe the relationships of the field
quantities (displacement, stress and strain) in the whole domain. To solve the
problem, boundary conditions should be appended, which concern the field quan-
tities at the interface between the matrix and inhomogeneity (r = a), and the
external surface of the matrix shell (r = b), respectively.

2.3.1. Interface stress model. Since the critical length of nanoparticles drops
down to several nanometers, the mechanical behavior of the interface between
the matrix and inhomogeneity should be considered to be size-dependent. In
the interface stress model, the linear constitutive relationship between interface
stress and interface strain is given as [19, 20]:

(2.6) σsαβ = σ0
αβ + Csαβγδε

s
γδ = σ0

αβ + λsε
s
γγ
δαβ + 2µsε

s
αβ
,

where σ0
αβ is the residual interface stress when the bulk materials are unstrained

and it is usually neglected [24, 27]; Csαβγδ is the interface stiffness tensor and
Csαβγδ = λsδαβδγδ + µs(δαγδβδ + δαδδβγ) in the isotropic case; λS and µS could
be regarded as interface Lamé constants and the interface bulk modulus can be
defined as Ks = λs + µs.

Additionally, the interface between the matrix and inhomogeneity is consid-
ered to deform coherently without slipping from the bulk material. In this case,
the interface strain equals to the bulk strain so the displacement and strain field
are continuous across the interface. However, the bulk stress field in the matrix
and inhomogeneity are discontinuous and it is determined from the interface
stress in the vicinity of the interface as [19, 20]:

σsαβ,β + 〈〈σαjnj〉〉 = 0,(2.7)

σsαβκαβ = 〈〈σijninj〉〉,(2.8)
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where ni is the unit vector normal to the interface; καβ is the interface curvature
tensor and 〈〈∗〉〉 = (∗)m − (∗)i denotes the quantity jump across the interface
from the inhomogeneity to matrix.

It should be noted that the interface stress tensor is a two-dimensional quan-
tity and the strain normal to the interface is excluded. Thus, the Greek indices
take the value of 1 or 2, while Latin subscripts adopt values from 1 to 3. Eq. (2.7)
could be regarded as an interface stress equilibrium equation similar to the bulk
stress equilibrium equation of Eq. (2.2), while Eq. (2.8) could be regarded as the
interface boundary condition.

2.3.2. External surface. Finally, the elastic field in the composite sphere element
could be determined by subjecting the external surface of the matrix shell to
either displacement or traction boundary condition as:

u
(0)
i = ε0

ijxj ,(2.9)

t
(0)
i = σ0

ijnj ,(2.10)

where ε0
ij and σ

0
ij are constant tensors.

Generally, the upper bound of the effective elastic moduli of the composite
sphere element is obtained by applying displacement boundary condition on
the outer radius of the element, while the lower bound is obtained by applying
a traction boundary condition.

More specifically, according to the CSA model, the composite sphere element
is isotropic with bulk modulus of K̄ and shear modulus of µ̄. To obtain the
effective bulk modulus, the spherically symmetric boundary condition should be
applied on the external surface of the matrix shell, so Eqs. (2.9) and (2.10) are
reduced to:

u
(0)
i = ε0xi,(2.11)

t
(0)
i = σ0ni,(2.12)

where ε0 and σ0 are constant scalars.
Similarly, to obtain the effective shear modulus, the transverse shear bound-

ary condition should be applied on the external surface of the matrix shell, so
Eqs. (2.9) and (2.10) are reduced to:

u
(0)
1 =

γ0

2
x2, u

(0)
2 =

γ0

2
x1, u

(0)
3 = 0,(2.13)

t
(0)
1 = τ0n2, t

(0)
2 = τ0n1, t

(0)
3 = 0,(2.14)

where γ0 and τ0 are constant scalars.
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2.4. Elastic field

Based on the CSA and the interface stress model above, the elastic field is
solved as the boundary value problem in the theory of elasticity by combining
the field equations in Section 2.2 and boundary conditions in Section 2.3.

2.4.1. Spherically symmetric boundary condition. When spherically symmetric
displacement or traction boundary condition of Eq. (2.11) or (2.12) is applied
on the external surface of the matrix shell, the displacement field is spherically
symmetric, so the only nonzero displacement component in a spherical coordinate
system is the radial displacement ur = ur(r). From Eq. (2.5), the displacement
field in both the matrix and inhomogeneity takes the following form as:

(2.15) ur = Ar +
B

r2
,

where the unknown constants are determined through boundary conditions in
Section 2.3.

With the displacement field given above, the strain and stress field in both
the matrix and inhomogeneity could be found easily afterwards. Therefore, all
the elastic field has been obtained for spherically symmetric boundary condi-
tions.

2.4.2. Transverse shear boundary condition. When transverse shear boundary
condition is applied on the external surface of the matrix shell, the displacement
field in both the matrix and inhomogeneity takes the following form as:

(2.16)

ur = Ur(r) sin2 θ cos 2φ,

uθ = Uθ(r) sin θ cos θ cos 2φ,

uφ = Uφ(r) sin θ sin 2φ,

where Ur, Uθ, Uφ are unknown functions of only r.
From Eq. (2.5), the three unknown functions satisfy the following relation-

ships:

(2.17)

2(1− ν)U ′′r +
4(1− ν)

r
U ′r −

3U ′θ
r

+
9− 12ν

r2
Uθ +

16ν − 10

r2
Ur = 0,

(1− 2ν)U ′′θ +
2(1− 2ν)

r
U ′θ +

2

r
U ′r +

8(1− ν)

r2
Ur −

12(1− ν)

r2
Uθ = 0,

Uθ + Uφ = 0.
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The solution takes the following form:

(2.18)

Ur = A1r −
6ν

1− 2ν
A2r

3 +
3A3

r4
+
A4(5− 4ν)

(1− 2ν)r2
,

Uθ = A1r −
7− 4ν

1− 2ν
A2r

3 − 2A3

r4
+

2A4

r2
,

Uφ = −Uθ,

where the unknown constants are determined through boundary conditions in
Section 2.3 and they are too cumbersome to be listed here. When the displace-
ment field is solved, the strain and stress field in both the matrix and inhomo-
geneity could be found easily afterwards. Therefore, all the elastic field has been
obtained for transverse shear boundary conditions.

2.5. Effective elastic moduli

The basic idea to obtain the effective elastic moduli of the nanoparticle-
reinforced composites is to compare certain quantities of the composite sphere
element with that of a homogeneous equivalent medium with the unknown ef-
fective elastic moduli under the same boundary conditions. Here we chose the
quantity as the strain energy, average stress and strain, and boundary responses
on the outer surface (traction or displacement vector), respectively. Each ap-
proach has been used in the literature for the calculation of either the effective
bulk or shear modulus of composites, but no explanation is made about the
applicability (and reason) of each approach to either effective modulus, which
is investigated with discussions on the cons and pros of each approach in the
following.

2.5.1. Energy approach. The approach to obtain the effective elastic moduli is
based on the variational principle by equating the strain energy of the compos-
ite sphere element to a homogeneous equivalent medium with unknown stiff-
ness C̄ijkl. This approach was first proposed by Hashin [5] to obtain the bounds
of the effective elastic moduli of composites as the classical solution where no in-
terface effect was considered. Based on the interface stress model, this approach
has been adopted by Chen et al. [24] to obtain the exact solution to the effective
shear modulus by the generalized self-consistent method.

When the displacement boundary condition of Eq. (2.9) is applied, the strain
field in the homogeneous medium is simply ε0

ij and the stress field is C̄ijklε0
kl so

the strain energy in the homogeneous equivalent medium can be written as:

(2.19) Uh =
1

2

∫
V

Cijklε
0
ijε

0
kl dV.
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When the traction boundary condition of Eq. (2.10) is applied, the stress field
in the homogeneous medium is simply σ0

ij and the strain field is (C̄ijkl)
−1
σ0
kl so

the strain energy in the homogeneous equivalent medium can be written as:

(2.20) Uh =
1

2

∫
V

(Cijkl)
−1σ0

ijσ
0
kl dV.

For the heterogeneous composite sphere element, the total strain energy is
contributed by the inhomogeneity, matrix and interface together as:

(2.21) Uc = Ui + Um + UΓ,

where

Ui =
1

2

∫
Vi

σiijε
i
ij dV,(2.22)

Um =
1

2

∫
Vm

σmij ε
m
ij dV,(2.23)

UΓ =
1

2

∫
Γ

σSαβε
S
αβ dΓ.(2.24)

A direct calculation of Eq. (2.21) involves cumbersome volume integrals of
quadratic terms, which need to be rewritten into a simpler form by using the
perturbation method proposed by Eshelby [42]:

(2.25) Uc = U0 + δU,

where U0 is the strain energy of a uniform matrix without the inhomogene-
ity subjected to the same boundary condition by replacing C̄ijkl with C

(m)
ijkl in

Eqs. (2.19) and (2.20).
When displacement boundary condition of Eq. (2.9) is applied, the perturbing

strain energy is given as:

(2.26) δU =
1

2

∫
Γ

(t
(Γ)
i u

(0)
i − t

(0)
i u

(Γ)
i ) dΓ,

where u(Γ)
i and t

(Γ)
i are the displacement and traction at the interface respec-

tively.
When the traction boundary condition of Eq. (2.10) is applied, the perturbing

strain energy is given as:

(2.27) δU = −1

2

∫
Γ

(t
(Γ)
i u

(0)
i − t

(0)
i u

(Γ)
i ) dΓ.
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In Eqs. (2.26) and (2.27), since the interface is considered to deform coher-
ently, then u(Γ)

i = ui
i = um

i so one can use either ui
i or u

m
i for u(Γ)

i However, stress
discontinuity exists at the interface of the composite sphere element, one must
use the stress field in the matrix to calculate t(Γ)

i = σm
ijnj . This is in contrast

to the original perturbation method proposed by Eshelby for perfectly bonded
interfaces of heterogeneous materials where t(Γ)

i = σm
ijnj = σi

ijnj .
By equating Eq. (2.25) to Eq. (2.19) and Eq. (2.20), i.e., if the strain energy of

the composite sphere element is considered to be the same with that of a homo-
geneous equivalent medium, the upper and lower bounds of the effective elastic
moduli of nanoparticle-reinforced composites could be obtained, respectively.

2.5.2. Average approach. A straightforward approach to obtain the effective elas-
tic moduli is expressed by the average stress and strain tensors:

(2.28) σij = Cijklεkl,

where the overbar denotes the volume average; C̄ijkl is the effective stiffness
tensor and C̄ijkl = K̄δijδkl + µ̄(δikδjl + δilδjk − 2δijδkl/3) in the isotropic case.

In this approach, the effective elastic moduli are obtained by equating the
average stress and strain in the composite sphere element to those of a homo-
geneous medium of the same size with unknown stiffness C̄ijkl, which is to be
solved by Eq. (2.28). It should be mentioned that, for general imperfect inter-
faces, the volume average of the composite should be carried out by considering
the discontinuities of displacement or stress field across the interface. Based on
the interface stress model, the average strain and stress tensors are given as [43]:

εij = fεiij + (1− f)εmij ,(2.29)

σij = fσiij + (1− f)σmij +
f

V

∫
Γ

〈〈σik〉〉nkxj dΓ,(2.30)

where displacement discontinuity is not included because the interface is con-
sidered to deform coherently, but the stress jump across the interface exists
according to the interface stress model.

The average approach involves volume integrals of the stress and strain fields
in the inhomogeneity and matrix respectively, and a surface integral of the stress
jump at the interface. These integrals are tackable for the spherically symmet-
ric boundary condition in Eqs. (2.11) or (2.12) to determine the effective bulk
modulus. However, for the transverse shear boundary condition, with the dis-
placement field given with trigonometric functions in Eq. (2.16), the stress and
strain field will also be trigonometric functions, so the volume integrals of the
stress and strain field will be both zero. Therefore, arbitrary effective shear mod-
ulus satisfies Eq. (2.28), so it could not be determined by this approach.
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2.5.3. Boundary approach. When the displacement boundary condition is ap-
plied, a stress field will be generated in the whole domain of the composite and
the traction vector can be calculated at the outer shell of the matrix. Under the
same displacement boundary condition, the traction vector for a homogeneous
medium of the same size also can be calculated at the boundary. A proper effec-
tive elastic moduli of the composite should guarantee these two traction vectors
be equal to each other naturally. Therefore, this approach obtains the effective
elastic moduli by equating the traction response on the outer surface of the
composite sphere element to that of a homogeneous sphere of the same size as
the composite sphere element under the same displacement boundary condition.
Similarly, when the traction boundary condition is applied, this approach obtains
the effective elastic moduli by equating the displacement response on the outer
surface of the composite sphere element to that of a homogeneous sphere of the
same size under the same traction boundary condition. Since the elastic field so-
lution has been obtained in Section 2.4, the traction or displacement solution on
the outer surface could be used directly to compare with that of a homogeneous
sphere of the same size under the same boundary condition. The advantage of this
approach is that, neither volume nor surface integral is involved in this approach,
and only simple algebraic calculations are needed to obtain the effective elastic
moduli. Based on the interface stress model, this approach has been adopted by
Chen et al. [24] to obtain the effective bulk modulus of nanoparticle-reinforced
composites. However, it should be noted that the quantity to be compared in the
composite sphere element and that of a homogeneous sphere is the traction or
displacement vector on the outer surface, i.e., a vector-form quantity should be
compared in this approach. Therefore, all components of the vector-form quan-
tity should be satisfied simultaneously with no conflicts. Unfortunately, as it is
seen in Section 3, the effective bulk modulus could be obtained by this approach
but it fails to obtain the effective shear modulus.

3. Results

In this section, closed-form solutions to the effective elastic moduli of nano-
particle-reinforced composites is provided based on the CSA and interface stress
models. Comparison with experiment results is presented afterwards.

3.1. Effective bulk modulus

When spherically symmetric displacement or traction boundary condition of
Eq. (2.11) or (2.12) is applied on the external surface of the matrix shell, the elas-
tic field (displacement, strain and stress) in both the matrix and inhomogeneity
has been found in Section 2.4.1. Afterwards, according to Section 2.5, the effec-
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tive bulk modulus of the nanoparticle-reinforced composites could be obtained
by comparing the strain energy, average stress and strain, and the boundary
response, respectively, of the composite sphere element with that of a homoge-
neous equivalent medium with the unknown effective elastic moduli under the
same boundary conditions.

Following the energy approach in Section 2.5.1, the strain energy of the com-
posite sphere element can be calculated by Eq. (2.25), which is compared with
the strain energy of a homogeneous equivalent medium to obtain the bounds of
the effective bulk modulus. Similar to the classical case without the consider-
ation of the interface effect, the upper and lower bounds of the effective bulk
moduli of nanoparticle-reinforced composites coincide as given below:

(3.1) Kupper = K lower = Km +
f
(
Ki −Km + 4Ks

3a

)
1 + (1− f)

(
Ki−Km
Km+ 4

3
µm

)
+ 4Ks

3a
(
Km+ 4

3
µm
) .

Following the average approach in Section 2.5.2, the average strain and stress
field of the composite sphere element can be calculated by Eqs. (2.29) and (2.30),
which is compared with that of a homogeneous equivalent medium to obtain the
bounds of the effective bulk modulus. For convenience, Eq. (2.28) is rewritten in
a matrix form under the spherical coordinate system as:

(3.2)



σrr
σθθ
σ
φφ

σ
rθ

σ
rφ

σ
θφ

 =



K + 4
3µ K −

2
3µ K −

2
3µ

K − 2
3µ K + 4

3µ K −
2
3µ 0

K − 2
3µ K −

2
3µ K + 4

3µ
2µ

0 2µ
2µ





εrr
εθθ
ε
φφ

ε
rθ

ε
rφ

ε
θφ

 .

Since the problem is spherically symmetric under the spherically symmetric
displacement or the traction boundary condition, it is found that σ̄rr 6= 0, σ̄θθ =
σ̄φφ 6= 0, σ̄rθ = σ̄rφ = σ̄θφ = 0 and ε̄rr 6= 0, ε̄θθ = ε̄φφ 6= 0, ε̄rθ = ε̄rφ = ε̄θφ = 0
so Eq. (3.2) is reduced to the following two independent algebraic equations:

σrr =

(
K +

4

3
µ

)
εrr +

(
2K − 4

3
µ

)
εθθ,(3.3)

σθθ =

(
K − 2

3
µ

)
εrr +

(
K +

2

3
µ

)
εθθ.(3.4)

The solution to Eqs. (3.3) and (3.4) is found to provide the same upper and
lower bounds of the effective bulk moduli with those of the energy approach in
Eq. (3.1). However, it should be mentioned that the solution also contains the
effective shear modulus, which is interesting to provide the same value of µ̄ = µm
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when the spherically symmetric displacement or the traction boundary condition
of Eq. (2.11) or (2.12) is applied. It is obvious that the upper and lower bounds
of the effective shear modulus could not be simply µm but the same upper and
lower bounds of the effective shear modulus correspond to the same upper and
lower bounds of the effective bulk modulus.

Following the boundary approach in Section 2.5.3, the traction or displace-
ment response on the outer surface of the composite sphere element can be found
respectively under displacement or traction boundary condition, which is com-
pared with that of a homogeneous equivalent medium to obtain the bounds of the
effective bulk modulus. Since the problem is spherically symmetric, it is obvious
that tr 6= 0, tθ = tφ = 0 and ur 6= 0, uθ = uφ = 0. Therefore, in the boundary
approach to determine the effective bulk modulus, only one algebraic equation
in the radial direction is involved, and the same upper and lower bounds of the
effective bulk moduli are found with those of the energy approach in Eq. (3.1).

When the interface effect is considered, it can be seen from Eq. (3.1) that
the effective bulk modulus depends on only one interface elastic constant, the
interface bulk modulus Ks, as well as the size of nanoparticles.

If no interface effect is considered, Eq. (3.1) reduces to the classical solution [5]
which is size-independent.

3.2. Effective shear modulus

When the transverse shear boundary condition of Eq. (2.13) or (2.14) is
applied on the external surface of the matrix shell, the elastic field (displace-
ment, strain and stress) in both the matrix and inhomogeneity has been found
in Section 2.4.2. As mentioned in Section 2.5, for the transverse shear bound-
ary condition, with the displacement field given with trigonometric functions in
Eq. (2.16), the stress and strain field will also be trigonometric functions, so the
volume integrals of the stress and strain field will be both zero and the effective
shear modulus could not be determined by the average approach. Therefore, the
effective shear modulus is obtained in the following by comparing the strain en-
ergy and the boundary response, respectively, of the composite sphere element
with that of a homogeneous equivalent medium with the unknown effective elas-
tic moduli under the same boundary conditions.

Following the energy approach in Section 2.5.1, the strain energy of the com-
posite sphere element can be calculated by Eq. (2.25), which is compared with
the strain energy of a homogeneous equivalent medium to obtain the bounds of
the effective shear modulus. In contrast to the case of effective bulk modulus, the
upper and lower bounds of the effective shear modulus are distinct as given below:

(3.5) µupper =
µnumerupper

µdenomupper

, µlower =
µnumerlower

µdenomlower

,
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where the expressions are too long to be listed in the main text and they are
given in the Appendix.

Following the boundary approach in Section 2.5.3, the traction or displace-
ment responses on the outer surface of the composite sphere element can be
found, which is compared with that of a homogeneous equivalent medium to
obtain the bounds of the effective shear modulus. When the transverse shear
boundary condition of Eq. (2.13) or (2.14) is applied, with the displacement field
given in Eq. (2.16), it is found that tr 6= 0, tθ = tφ 6= 0 and ur 6= 0, uθ = uφ 6= 0
Therefore, in the boundary approach to determine the effective shear modulus,
two independent algebraic equations in the radial and circumferential directions
should be satisfied simultaneously. However, it is found that the two independent
equations conflict with each other when the transverse shear boundary condi-
tion is applied. This is due to the reason that the composite sphere element of
Hashin’s CSA model is not a neutral composite sphere [25] under the transverse
shear boundary condition, i.e., if one inserts the composite sphere element in
Fig. 1b back into the macroscopically isotropic composite medium in Fig. 1a,
the originally uniform field of the composites outside the composite sphere re-
gion will be disturbed. On the contrary, the boundary approach works for the
effective bulk modulus because the composite sphere element in Hashin’s CSA
model is a neutral composite sphere under the spherically symmetric bound-
ary condition. Therefore, the effective bulk modulus could be obtained by the
boundary approach but the effective shear modulus could not be obtained.

When the interface effect is considered, it can be seen from Eq. (3.5) that both
upper and lower bounds of the effective shear modulus depend on two interface
elastic constants, λs and µs, in a very complex way, which is in contrast to the
simple case of the effective bulk modulus dependent on only the interface bulk
modulus Ks. Furthermore, Eq. (3.5) shows that both upper and lower bounds
of the effective shear modulus also depend on the size of nanoparticles.

When no interface effect is considered, Eq. (3.5) reduces to the size-indepen-
ent classical solution in the following:

(3.6)1 µupper =

−500µm

(
−
((

νi+
7

5

)(
νm− 7

10

)
µi−µm

(
νi−

7

10

)(
νm− 7

5

))
(µi−µm)f

10
3

+

(
−2(νi+

7

5
)(ν2m− 3

2
νm+

7

8
)µ2
i +

((
νi−

14

5

)
ν2m

+

(
33

10
νi+

21

10

)
νm+

49

20
νi−

49

20

)
µmµi+µ

2
m

(
νi−

7

10

)(
ν2m−7

))
f

7
3

+

((
νi+

7

5

)
µi−8

(
νi−

7

10

)
µm

)((
63

50
µi−

63

50
µm

)
f

5
3

+

(
(f+2)ν2m−

(
21

10
f+3

)
νm+

7

20
f+

28

25

)
µi



Bounds of the effective elastic moduli. . . 299

−µm
(

(f−1)ν2m+

(
−21

10
f+

21

10

)
νm+

7

20
f− 49

50

)))/(
−1000

((
νi+

7

5

)(
νm− 7

10

)
µi

−µm
(
νi−

7

10

)(
νm+

7

5

))
(µi−µm)

(
νm∗−4

5

)
f

10
3 +

(
1000

(
νi+

7

5

)(
ν2m− 3

2
νm+

7

8

)
µ2
i

−500

((
νi−

14

5

)
ν2m+

(
33

10
νi+

21

10

)
νm+

49

20
νi−

49

20

)
µmµi−500µ2

m

(
νi−

7

10

)
(ν2m−7)

)
f

7
3

+1000

(
νi+

7

5

)
µi−8

(
νi−

7

10

)
µm

)((
− 63

100
µi+

63

100
µm

)
f

5
3

+

(
(f−1)ν2m−

(
3

2
f+

21

20

)
νm+

7

8
f− 14

25

)
µi

−µm
((

f+
1

2

)
ν2m+

(
−3

2
f− 21

20

)
νm+

7

8
f+

49

100

)))
,

(3.6)2 µlower =

−125µm(−8(µi−µm)

(
νm− 7

5

)((
νi+

7

5

)(
νm− 7

10

)
µi−µm

(
νm+

7

5

)(
νi−

7

10

))
f

10
3

+

(
−16

(
ν2m− 3

2
νm+

7

8

)(
νi+

7

5

)
µ2
i +8µm

((
νi−

14

5

)
ν2m+

(
33

10
νi+

21

10

)
νm+

49

20
νi−

49

20

)
µi

+8µ2
m

(
νi−

7

10

)
(ν2m−7)

)
f

7
3 +

((
νi+

7

5

)
µi−8

(
νi−

7

10

)
µm

)((
252

25
(µi−µm)f

5
3

+

(
(f+2)ν2m+

6

5
νm−7f− 56

25

)
µi−µm

(
(f−1)ν2m−7f+

49

25

)/
(
−2000(µi−µm)

((
νi+

7

5

)(
νm− 7

10

)
µi−µm

(
νm+

7

5

)(
νi−

7

10

))(
νm− 4

5

)
f

10
3

+

(
2000

(
ν2m− 3

2
νm+

7

8

)(
νi+

7

5

)
µ2
i −1000µm

((
νi−

14

5

)
ν2m+

(
33

10
νi+

21

10

)
νm

+
49

20
(νi−1)

)
µi−1000µ2

m

(
νi−

7

10

)
(ν2m−7)

)
f

7
3 +250

((
−126

25
µi+

126

25

)
f

5
3

+

(
(f−1)ν2m+

3

5
(f−1)νm+

7

5
f+

28

25

)
µi

−
((

f+
1

2

)
ν2m+

3

5
fνm+

7

5
f− 49

50

)
µm

)((
νi+

7

5

)
µi−8µm

(
νi−

7

10

)))
.

The result in Eq. (3.6) is provided as an explicit closed-form solution, which
is checked to be consistent with the implicit classical solution [5]. Moreover, if
the volume fraction of particles is very small, the upper and lower bounds of the
effective shear modulus in Eq. (3.6) are approximated as:

(3.7) µupper = µlower = µm

(
1−

15(1− νm
)(

1− µi
µm

)
7− 5νm + 2(4− 5νm) µiµm

f

)
,

which indicates that both bounds coincide and reduce to the shear modulus of
the matrix as expected when the particle concentration is close to zero (f → 0).

Similarly, if the volume fraction of particles is very large (f → 1), the upper
and lower bounds of the effective shear modulus in Eq. (3.6) are approximated
as:
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(3.8) µupper = µlower = µi

(
1−

(1− µm
µi

)(
7− 5νm + 2(4− 5νm) µiµm

)
15(1− νm)

(1− f)

)
,

which indicates that both bounds coincide and reduce to the shear modulus of
the particle as expected when the particle concentration is close to 1 (f → 1).

3.3. Comparison with experiment results

With the closed-form solution to the upper and lower bounds of the effective
elastic moduli of nanoparticle-reinforced composites, the theoretical result can be
used for numerical comparisons with experimental results. In the following, the
experimental result [44] of the elastic moduli of rubber-toughened poly (methyl-
methacrylate) (RT-PMMA) with different rubber particle fractions is used for
comparison. Transmission electron microscopy on the specimens reveals that the
rubber particles have nearly spherical shapes with the diameter ranging from
50 nm to 100 nm, which could be fairly approximated by the theoretical solution
with the average radius of the rubber particles set to a = 37.5 nm. In the experi-
mental report, the elastic moduli of the rubber reinforcement and PMMA matrix
are given as: Ki = 2.60GPa, µi = 0.54GPa, νi = 0.40 and Km = 5.91GPa,
µm = 2.25GPa, νm = 0.33, respectively. To consider the interface effect, the
interface elastic constants of the rubber/PMMA interface should be provided.
Unfortunately, the interface elastic property of solids is extremely difficult to
obtain by experiments, and the only related experimental result is the recent
report [45, 46] on the surface elastic constants of a soft polymer gel through mi-
croscopic observations of the contact-line geometry of a partially wetting droplet
on an anisotropically stretched substrate. However, atomistic simulations indi-
cate that surface/interface elastic constants are between −10N/m and 10N/m
for many metallic crystals and semiconductors [47–52]. Unlike the positive defi-
niteness of the bulk stiffness tensor to guarantee the stability of the material, the
surface/interface stiffness tensor does not need to be positive definite because the
surface/interface cannot exist independent of the bulk material, so the stability
of the material is maintained as long as the total energy (bulk+surface/interface)
satisfies the positive definiteness condition. In our calculation, the interface elas-
tic constants are set to λs = 5N/ m, µs = −2.5N/m with Ks = 2.5N/m as an
illustration of the interface effect.

Figure 2 shows the theoretical and experimental results of the effective mod-
uli of RT-PMMA composites for different rubber volume fractions with and
without the consideration of the interface effect. Both the effective bulk modu-
lus (Fig. 2a) and effective shear modulus (Fig. 2b) of the composites decrease
when the rubber volume fraction increases because the elastic moduli of rub-
ber particles are smaller than those of the PMMA matrix. For comparisons, the
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Hashin–Shtrikman bound solutions [7] and exact solutions by GSCM [24] are
added together.

For the effective bulk modulus of composites, the Hashin–Shtrikman upper
and lower bounds are distinct while those by Hashin’s CSA model in Eq. (3.1) are
the same and coincide with the exact solution by GSCM, so the bound solution
in Eq. (3.1) and the exact solution by GSCM of the effective bulk modulus is just

a)

b)

Fig. 2. Effective moduli of RT-PMMA composites with different rubber volume fractions;
a) bulk modulus, b) shear modulus.
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a single curve with or without the interface effect respectively. In Fig. 2a, when
the interface effect is not considered, the exact solution by GSCM and bounds
by Hashin’s CSA model are essentially identical to the Hashin–Shtrikman upper
bound as expected from their formulae. Furthermore, it should be noticed that
the solutions with or without the interface effect are distinct at the limit of f = 1,
which is discussed in detail in Section 4.3.

On the other hand, for the effective shear modulus of composites, the upper
and lower bounds of all the bound solutions are distinct so there are two curves
for each bound solution with or without the consideration of the interface effect.
In Fig. 2b, when the interface effect is not considered, the Hashin-Shtrikman
bounds are different from those by Hashin’s CSA model in Eq. (3.6) because the
Hashin–Shtrikman bounds are irrespective of the microstructural arrangement
of the composite in contrast to the arrangement requirement of Hashin’s CSA
model as illustrated in Section 2.1. Moreover, the exact solutions by GSCM
are validated as setting well between the bound solutions with or without the
consideration of the interface effect respectively. Similar to the effective bulk
modulus in Fig. 2a, the solutions to the effective shear modulus with or without
the interface effect are distinct at the limit of f = 1, which is discussed in detail
in Section 4.3.

Furthermore, it can be seen that the theoretical results with and without
the consideration of the interface effect are not different significantly, although
both agree well with the experimental results of the effective moduli of RT-
PMMA composites for different rubber volume fractions. Therefore, for such
specific composites, the interface effect is not necessarily important because the
particle size is still fairly large to demonstrate the interface effect. Unfortunately,
experimental results of the elastic moduli of nanoparticle-reinforced composites
are very rare, and the particle size in experiments are usually several microns or
above. This might be the reason that only theoretical results of the elastic moduli
of nanoparticle-reinforced composites with the interface effect are reported as far
as the authors have found in the literature. However, the bounds of the effective
moduli of nanoparticle-reinforced composites are indeed found to depend on the
interface elastic constants and the size of nanoparticles, which is discussed in
detail in the following.

4. Discussions

In Section 3, based on the CSA and the interface stress model, the upper and
lower bounds of the effective bulk modulus of nanoparticle-reinforced composites
are found to coincide in Eq. (3.1) by three different approaches, while distinct
upper and lower bounds of the effective shear modulus are found in Eq. (3.5) by
the energy approach. For nanomaterials, both Eq. (3.1) and Eq. (3.5) indicate
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that the effective elastic moduli of nanoparticle-reinforced composites depend on
the interface elastic constants and the size of nanoparticles, which are important
for the fabrication and design of nanomaterials.

4.1. Interface effect

Figure 3 shows the change of the effective bulk modulus with different vol-
ume fractions of nanoparticles for different interface elastic constants. The elastic
moduli of the nanoparticles and matrix are the same with those in Section 3.3,
and the size of nanoparticles is set to 50 nm. Since interface elastic constants are
usually between −10N/m and 10N/m for solids, the interface bulk modulus is
set to 0,±5,±10N/m respectively. The case of Ks = 0N/m corresponds to the
classical solution which takes no interface effect into consideration. It is obvi-
ously seen that the result of the effective bulk modulus with a different interface
bulk modulus is distinct compared with the classical solution. The difference be-
tween the classical solution and all the other curves with the consideration of the
interface effect become more significant when the volume fraction of nanoparti-
cles increases, which is as expected because the total interface-to-volume ratio
increases with more nanoparticles. When the interface bulk modulus is positive,
the effective bulk modulus is larger than the classical solution and vice versa.
The larger the interface bulk modulus is, the more effective bulk modulus devi-
ates from the classical solution. When the interface bulk modulus is extremely

Fig. 3. Change of the effective bulk modulus with different volume fractions of nanoparticles
for different interface elastic constants.
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small, the curves tend to converge to the classical solution. This monotonically
increasing behavior could be easily proven as the derivative of the effective bulk
modulus in Eq. (3.1) with respect to the interface bulk modulus is strictly posi-
tive thanks to the closed-form solution:

(4.1)
dK̄

dKs
=

4af

27

(
3Km + 4µm(

f(Ki −Km)−Ki − 4
3µm

)
a− 4

3Ks(1− f)

)2

> 0.

Figure 4 shows the change of the effective shear modulus with different vol-
ume fractions of nanoparticles for different interface elastic constants. The elastic
moduli of the nanoparticles and matrix are the same with those in Section 3.3,
and the size of nanoparticles is set to 50 nm. Similar to the effective bulk mod-
ulus, the difference between the classical solution and all the other curves for
the effective shear modulus with the consideration of the interface effect become
more significant when the volume fraction of nanoparticles increases. In Fig. 4, to
consider the interface effect, the interface elastic constant λs is fixed to 2.5N/m,
while the other interface elastic constant µs is set to ±1.5N/m for comparison.
In this case, both the upper and lower bounds of the effective shear modulus
are larger than those of the classical solution with µs = 1.5N/m, but they are
smaller than those of the classical solution with µs = −1.5N/m. It should be
noted that the effective shear modulus depends on two interface elastic con-
stants, λS and µS , in contrast to the case that the effective bulk modulus only
depends on the interface bulk modulus Ks. Therefore, unlike the monotonically

Fig. 4. Change of the effective shear modulus with different volume fractions of
nanoparticles for different interface elastic constants.
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increasing behavior of the effective bulk modulus with respect to the interface
bulk modulus, the changing trend of the effective shear modulus with respect to
the two interface elastic constants is much more complex as can be seen from the
complicated analytical expressions in the Appendix. Furthermore, there is in fact
a tiny numeric difference between the bounds of the effective shear modulus by
consideration of the interface effect at the limit of f = 1 which is difficult to no-
tice for the red dashed and blue dash-dotted curves in Fig. 4. This unexpected
limiting behavior of the bounds of the effective shear modulus is discussed in
detail in Section 4.3.

4.2. Size effect

Figure 5 shows the change of the effective bulk modulus with different volume
fractions of nanoparticles for different sizes of nanoparticles. The elastic moduli
of the nanoparticles and matrix are the same with those in Section 3.3, and
the interface bulk modulus is fixed to Ks = 10N/m. On the other hand, Fig. 6
shows the change of the effective shear modulus with different volume fractions
of nanoparticles for different sizes of nanoparticles. The elastic moduli of the
nanoparticles and matrix are the same with those in Section 3.3, and the inter-
face elastic constants are fixed to λs = 10N/m, µs = −5N/m. In Figs. 5 and 6,
It is obviously seen that the results of the effective bulk and shear moduli with
different sizes of nanoparticles are different, which is a typical size-dependent

Fig. 5. Change of the effective bulk modulus with different volume fractions of nanoparticles
for different sizes of nanoparticles.
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behavior of nanomaterials. Moreover, if the size of nanoparticles reaches above
100 nm, both the effective bulk and shear moduli tend to converge to the classical
solution. This is as expected because the interface effect only plays an impor-
tant role at nano scales in determining the behavior of nanoparticle-reinforced
composites. However, in Figs. 5 and 6, when the size of nanoparticles increases,
the effective bulk modulus decreases while both the upper and lower bounds of
the effective shear modulus increase on the contrary.

Fig. 6. Change of the effective shear modulus with different volume fractions of
nanoparticles for different sizes of nanoparticles.

4.3. Limit analysis

For the classical case without the interface effect, when the particle concen-
tration takes the limit of 0 or 1, it is obvious that the bounds of the effective
elastic moduli of conventional composites should coincide and converge to those
of the matrix and particle, respectively. In the following, limit analysis is per-
formed on the bounds of the effective elastic moduli of nanoparticle-reinforced
composites when the particle concentration is extremely small or large. Some
unexpected results are found which may be unnoted in the literature.

Firstly, by setting f = 0 in Eq. (3.1), i.e., when the nanocomposites become
pure matrix, the bounds of the effective bulk modulus coincide and converge to
the bulk modulus of the matrix similar to the classical case. However, by setting
f = 1 in Eq. (3.1), i.e., when the nanocomposites become pure nanoparticles,
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the bounds again coincide but converge to:

(4.2) Kupper|f=1 = K lower|f=1 = Ki + ∆K = Ki +
4Ks

3a
,

where ∆K = 4Ks/3a is the difference from the bulk modulus of particle (Ki) in
the classical case. In essence, the parameter Ks in Eq. (4.2) should be interpreted
as surface bulk modulus instead of interface bulk modulus. It is identical to
Eq. (54) (neglecting the third-order bulk elastic constants) of Dingreville
et al. [22] for the exact solution to the effective stiffness tensor of spherical
nanoparticles. Furthermore, since Ki ∼ GPa and Ks ∼ N/m, the difference ∆K
is comparable to the bulk modulus Ki, i.e., ∆K ∼ Ki when the particle shrinks
to nanoparticles (a ∼ nm).

Secondly, by setting f = 0 in Eq. (3.5), the bounds of the effective shear
modulus coincide and converge to the shear modulus of the matrix similar to the
classical case. However, by setting f = 1 in Eq. (3.5), the bounds of the effective
shear modulus of pure spherical nanoparticles become distinct. Specifically, the
upper bound is reduced to:

(4.3) µupper|f=1 = µi + ∆µ = µi +
7µs + λs

5a
,

where ∆µ = (7µs + λs)/5a is the difference from the shear modulus of particle
(µi) in the classical case and it is comparable to the shear modulus µi, i.e.,
∆µ ∼ µi for nanoparticles as µi ∼ GPa and µs, λs ∼ N/m. Equation (4.3) is
also identical to Eq. (55) (neglecting the third-order bulk elastic constants) of
Dingreville et al. [22] for the exact solution to the effective stiffness tensor of
spherical nanoparticles.

On the contrary, the lower bound of the effective shear modulus of pure
nanoparticles is distinct and reduced to:

(4.4) µlower|f=1 = µupper|f=1 + ∆µ = µi + ∆µ+ ∆µ,

where ∆µ̄ denotes the difference from the upper bound of the effective shear
modulus of pure nanoparticles:

(4.5) ∆µ = − 24

µi
5νi+7
7−10νi

+ 4(7µs+6λs)
5a

(
2µs + λs

5a

)2

.

It is seen in Eq. (4.5) that ∆µ̄ ∼ GPa for nanoparticles as µi ∼ GPa and
µs, λs ∼ N/m, so ∆µ̄ is also comparable to the shear modulus µi similar to
∆µ ∼ µi for nanoparticles. However, this difference between the bounds of the
effective shear modulus of pure nanoparticles is not seen in Fig. 2b or Fig. 6 at
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the limit of f = 1 because the interface elastic constants happen to be set to
2µs + λs = 0 that leads to ∆µ̄ = 0 according to Eq. (4.5). As mentioned earlier,
there is in fact a tiny numeric difference between the bounds of the effective
shear modulus with the interface effect at the limit of f = 1 which is difficult
to notice for the red dashed and blue dash-dotted curves in Fig. 4 because the
particle size is fairly large (a = 50nm). To illustrate the difference ∆µ̄ between
the bounds of the effective shear modulus with the interface effect, the particle
size is shrunk to a = 5nm and Fig. 4 is redrawn as Fig. 7 below. It is very
obvious from the red dashed curve in Fig. 7 to see the difference between the
bounds of the effective shear modulus of pure nanoparticles at the limit of f = 1
for interface elastic constants λs = 2.5Nm, µs = 1.5N/m, while the difference
is still unnoticeable from the blue dash-dotted curve in Fig. 7 for the case of
interface elastic constants λs = 2.5N/m, µs = −1.5N/m as ∆µ̄ is still very
small according to Eq. (4.5).

Fig. 7. Change of the effective shear modulus with different volume fractions of
nanoparticles (a = 5 nm).

It is unexpected to see that the bounds of the effective shear modulus of pure
nanoparticles deviate from each other in contrast to the effective bulk modulus
of nanoparticles or both effective moduli of conventional composites. This could
be explained by invoking the interface stress model and the concept of neutral
inclusion. In the classical case of conventional composites under the transverse
shear boundary condition, the non-neutral composite sphere element becomes
a neutral particle as no matrix is involved, thus the bounds of the effective shear
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modulus of conventional composites coincide at the limit of f = 1. On the con-
trary, in the case of nanocomposites, from the interface stress model of Eqs. (2.7)
and (2.8), the stress jump in nanoparticles across the interface (or surface ex-
actly) can be regarded to be from the nanoparticle to void as an imaginary
matrix, so the non-neutral composite sphere element in nanocomposites is still
non-neutral as a nanoparticle that leads to distinct bounds of the effective shear
modulus of pure nanoparticles. As for the effective bulk modulus, the compos-
ite sphere element is a neutral composite sphere regardless of the existence of
the interface effect under the spherically symmetric boundary condition, so the
bounds of the effective bulk modulus of conventional composites or nanocom-
posites always coincide.

5. Conclusions

This work investigates the bounds of the effective elastic moduli of nano-
particle-reinforced composites based on the CSA and interface stress models.
The elastic field is solved as the boundary value problem in the theory of elastic-
ity based on the CSA and interface stress models, which is then used to derive
the bounds of the effective elastic moduli. Three different approaches are formu-
lated by comparing the strain energy, average stress and strain, and boundary
responses, respectively, of the composite sphere element with that of a homoge-
neous equivalent medium under the same boundary conditions. It is found that
the effective bulk modulus can be obtained by all three different approaches but
the effective shear modulus can be obtained only by the energy approach. The
bounds of the effective bulk modulus coincide and depend only on the inter-
face bulk modulus, while those of the effective shear modulus are distinct and
depend on two interface elastic constants. The influences of the interface effect
and the size of nanoparticles on the bounds of the effective elastic moduli of
nanoparticle-reinforced composites are discussed in detail, which are important
for the fabrication and design of nanomaterials. Moreover, the limit analysis dis-
closes that the bounds of the effective bulk modulus of pure spherical nanoparti-
cles coincide but deviate from the bulk modulus of particle in the classical case,
and the bounds of the effective shear modulus are distinct in contrast to the
effective bulk modulus of pure spherical nanoparticles or both effective moduli
of conventional composites.

Declarations

The authors have no conflicts of interest to declare that are relevant to the
content of this article.



310 Z. Tang, W. Ye

Appendix

Using softwares like Maple or Mathematica, the expressions are given as:
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