Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Języki publikacji
Abstrakty
The trend of reducing electricity consumption and environmental protection has contributed to the development of refrigeration technologies based on the thermal effect of adsorption. This article proposes a methodology for conducting numerical simulations of the adsorption and desorption processes. Experimental data available in the literature were used as guidelines for building and verifying the model, and the calculations were carried out using commercial computational fluid dynamics software. The simulation results determined the amount of water vapor absorbed by the adsorbent bed and the heat generated during the adsorption process. Throughout the adsorption process, the inlet water vapor velocity, temperature, and pressure in the adsorbent bed were monitored and recorded. The results obtained were consistent with the theory in the literature and will serve as the basis for further, independent experimental studies. The validated model allowed for the analysis of the effect of cooling water temperature on the sorption capacity of the material and the effect of heating water temperature on bed regeneration. The proposed approach can be useful in analyzing adsorption processes in refrigeration applications and designing heat and mass exchangers used in adsorption systems.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
177--194
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
- Cracow University of Technology, Jana Pawla II 37, 31-864 Kraków, Poland
- M.A.S. Sp z o.o., Research and Development Department, Składowa 34, 27-200 Starachowice, Poland
autor
- Warsaw University of Technology, Institute of Metrology and Biomedical Engineering, św. Andrzeja Boboli 8, 02-525 Warszawa, Poland
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warszawa, Poland
autor
- M.A.S. Sp z o.o., Research and Development Department, Składowa 34, 27-200 Starachowice, Poland
Bibliografia
- [1] International Energy Agency (IEA: The future of cooling opportunities for energyefficient air conditioning, 2018. https://iea.blob.core.windows.net/assets/0bb45525-277f-4c9c-8d0c-9c0cb5e7d525/The_Future_of_Cooling.pdf (accessed 18 Aug. 2022).
- [2] Fan Y., Luo L.: Review of solar sorption refrigeration technologies: Development and applications. Renew. Sust. Energ. Rev. 11(2007), 8, 1758–1775.
- [3] Wang D., Li H., Li D., Xia Y., Zhang J.: A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems. Renew. Sust. Energ. Rev. 14(2010), 1, 344–353.
- [4] Kuchmacz J., Bieniek A., Mika Ł.: The use of adsorption chillers for waste heat recovery. Polityka Energetyczna – Energ. Policy J. 22(2019), 2, 89–106.
- [5] Krzywanski J., Sztekler K., Bugaj M., Kalawa W., Grabowska K., Chaja P., Sosnowski M., Nowak W., Mika Ł., Bykuć S.: Adsorption chiller in a combined heating and cooling system: simulation and optimization by neural networks. Bull. Pol. Acad. Sci. Tech. Sci. 69(2021), 3, e137054.
- [6] Li X., Hou X., Zhang X., Yuan Z.: A review on development of adsorption cooling – Novel beds and advanced cycles. Energ. Convers. Manage. 94(2015), 221–232.
- [7] Elsheniti M.B., Elsamni O.A., Al-Dadah R.K., Mahmoud S., Elsayed E., Saleh K.: Adsorption refrigeration technologies. In: Sustainable Air Conditioning Systems. IntechOpen, 2018.
- [8] Wang R., Wang L., Wu J.: Adsorption Refrigeration Technology – Theory and Application. Wiley, 2014.
- [9] Rani S., Sud D.: Effect of temperature on adsorption-desorption behaviour of triazophos in Indian soils. Plant Soil Environ. 61(2015), 1, 36–42.
- [10] Papakokkinos G., Castro J., López J., Oliva A.: A generalized computational model for the simulation of adsorption packed bed reactors – Parametric study of five reactor geometries for cooling applications. Appl. Energ. 235(2019), 409–427.
- [11] Petrik M., Szepesi G., Jármai K.: CFD analysis and heat transfer characteristics of finned tube heat exchangers. Pollack Period. 14(2019), 3, 165–176.
- [12] Wang X., Chua H., Ng K.: Simulation of the silica gel-water adsorption chillers. In: Proc. Int. Refrigeration and Air Conditioning Conf., July 12-15, 2004, 663.
- [13] White J.: A CFD Simulation on how the different sizes of silica gel will affect the adsorption performance of silica gel. Model. Simul. Eng. 2012(2012), 65143.
- [14] Mohammed H.: Assesment of numerical models in the evaluation of adsorption cooling system performance. Int. J. Refrig. 99(2019), 166–175.
- [15] Ansys Fluent Theory Guide, 2023, https://www.ansys.com/
- [16] Śmierciew K.: Numerical and Experimental Aspects of Selected Thermal and Flow Problems of Equipment Used in Refrigeration and Thermal Technology. Oficyna Wydawnicza Politechniki Białostockiej, Białystok 2018 (in Polish).
- [17] Glueckauf E.: Theory of chromatography. Part 10 – formula for diffusion into spheres and their application to chromatography. Trans. Faraday Soc. 51(1955), 1540–1551.
- [18] Sun B., Chakraborty A.: Thermodynamic frameworks of adsorption kinetics modeling: dynamic water uptakes on silica gel for adsorption cooling applications. Energy 84(2015), 296–302.
- [19] Tran H.: Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 120(2017), 88–116.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Identyfikator YADDA
bwmeta1.element.baztech-9aa73a8c-21c5-43dd-a4a4-fe38f8a3aed5