PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methodology of Testing for Aluminium Honeycomb Impact Attenuator in Quasi-Static Conditions and Influence of Supporting Structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper examines the influence of two different supports, i.e., composite and steel, on the results obtained during a quasi-static crush test of an aluminum alloy honeycomb impact attenuator. It’s part of a vehicle that competes in the Formula Student series and requires safety tests to be eligible to participate in events. The attenuator is tested in two configurations – first with a rigid steel support base and second – with a composite support base, which represents a realistic replica of the first 50mm of carbon fiber monocoque used in a vehicle. The composite base is less stiff and must be tested with the impact attenuator as it is a possible safety weak point. The testing machine was an Instron 8516 set to a 60mm/min feed speed with a sampling rate of 1kHz. The results showed that the values of energy absorbed were higher (7983.9J to 8732.1J) for the case with a composite base support, whereas the average forces were similar (about 50kN). This suggests that a more realistic scenario allows for a higher safety margin rather than a decrease in it. The recommendation is to address the possible energy cumulation as elastic deformation (spring-back effect), which might be unwanted. Further studies could include dynamic testing and other attenuator designs.
Twórcy
autor
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland
  • Institytuto Tecnologico de Puebla, Del Tecnológico 420, Corredor Industrial la Ciénega, 72220 Heroica Puebla de Zaragoza, Mexico
  • Institytuto Tecnologico de Puebla, Del Tecnológico 420, Corredor Industrial la Ciénega, 72220 Heroica Puebla de Zaragoza, Mexico
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland
  • Institute of Micromechanics and Photonics, Warsaw University of Technology, Św. Andrzeja Boboli 8, 02-525, Warsaw, Poland
Bibliografia
  • 1. Perz R. Matyjewski M. Risk of experiment failure – analysis of the crash test reliability. Journal of KONBiN, 41–48: 1(29),
  • 2. Prof. h.c. Béla Barényi online: http://www.dpma.de/ ponline/erfindergalerie/e_bio_barenyi.html.
  • 3. Deskiewicz A., Perz R. Agricultural aircraft wing slat tolerance for bird strike. Aircraft Engineering and Aerospace Technology. 2017; 89(4): 590–598.
  • 4. Bielawski R., Rządkowski W., Kowalik M., Kłonica M. Safety of aircraft structures in the context of composite element connection, international review of aerospace engineering (IREASE), 2020; 13(5): 159–164, DOI: 10.15866/irease.v13i5.18805.
  • 5. Schormans J.M.J. 2010. The design of a formula student front impact attenuator, Eindhoven University of Technology.
  • 6. Boria, Simonetta. 2010. Behaviour of an impact attenuator for formula SAE car under dynamic loading. International Journal of Vehicle Structures & Systems. 2. 10.4273/ijvss.2.2.01.
  • 7. Maskery, I., Aboulkhair, N.T., Aremu, A., Tuck, C., Ashcroft, I., Wildman, R., Hague, R. A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting. Mater. Sci. Eng. A 2016; 670: 264–274.
  • 8. Vrána, R., Červinek, O., Maňas, P., Koutný, D., Paloušek, D. Dynamic loading of lattice structure made by selective laser melting-numerical model with substitution of geometrical imperfections. Materials 2018; 11, 2129. https://doi.org/10.3390/ma11112129
  • 9. Moj, K.G. Robak, R. Owsiński, A. Kurek, K. Żak, and D. Przysiężniuk. A new approach for designing cellular structures: design process, manufacturing and structure analysis using a volumetric scanner,” J. Mech. Sci. Technol., Nov. 2022; 36(0): 1–6, https:// doi.org/10.1007/S12206-022-2107-1/METRICS
  • 10. Vrana, R., Koutny, D., Palousek, D. Impact resistance of different types of lattice structures manufac- tured by slm. MM Sci. J. 2016; 2016: 1579–1585.
  • 11. Szczesiak, R., Kowalik, M., Cader, M., Pyrzanowski, P. Parametric numerical model for predicting mechanical properties of structures made with FDM technology from polymeric materials. Polimery, 2021; 63(9), 626–632. https://doi. org/10.14314/polimery.2018.9.7
  • 12. Belingardi, G.; Obradovic, J. Design of the impact attenuator for a formula student racing car: Numerical simulation of the impact crash test. Journal of the Serbian Society for Computational Mechanics. 2010; 4: 52–65.
  • 13. Hart, J., Kennedy, C., LeClerc, T., Pollard, J. Fsae Impact Atenuattor, WPE, 2010
  • 14. Vettorello, A., Campo, G.A., Goldoni, G., Giacalone, M. Numerical-experimental correlation of dynamic test of a honeycomb impact attenuator for a formula SAE vehicle. Metals. 2020; 10(5): 652. https://doi.org/10.3390/met10050652
  • 15. Fahland, Jason & Hoff, Craig & Brelin-Fornari, Janet. Evaluating impact attenuator performance for a formula SAE vehicle. SAE International Journal of Passenger Cars – Mechanical Systems. 2011; 4: 836–847. 10.4271/2011-01-1106.
  • 16. Sørensen, J.B., Simonsen, C.D., Broberg, N. Modelling and mass optimisation of an aluminium honeycomb impact attenuator, Aalborg University, 2020. Available: https://projekter.aau.dk/projekter/ files/334484255/DMS4_Fib14_23B.pdf
  • 17. Praveen, M., & Lepšík, P. Design and analysis of honeycomb based impact attenuator. Manufacturing Technology. 2020; 20: 639–645. 10.21062/ mft.2020.089.
  • 18. Quoc, P.M., Krzikalla, D., Mesicek, J., Petru, J., Smiraus, J., Sliva, A., Poruba, Z. On aluminium honeycomb impact attenuator designs for formula student competitions. Symmetry 2020; 12: 1647. https://doi.org/10.3390/sym12101647
  • 19. Naman, A., Janmit, R., Gaurav S. Design and Analysis of Impact Attenuator: A Review. International Journal of Mechanical Engineering. 2015; 2: 1–7. 10.14445/23488360/IJME-V2I12P101.
  • 20. Bielawski, R., Kowalik, M., Suprynowicz, K., Rządkowski, W., Pyrzanowski, P. Investigation of riveted joints of fiberglass composite materials. Mech Compos Mater 2016; 52: 199–210. https:// doi.org/10.1007/s11029-016-9573-4
  • 21. Oshinibosi, A. Chassis and impact attenuator design for formula student race car, University of Leeds, 2012.
  • 22. Formula SAE Rules. 2022. available online: https://fsaeonline.com/cdsweb/gen/DocumentRe- sources.aspx
  • 23. Plastcore CrushLite™ available at https://www.plas- core.com/honeycomb/energy-absorbers/crushlite/
  • 24. LOCTITE EA 9466 available: https://www.henkel- adhesives.com/pl/pl/produkty/structural-adhesives/ loctite_ea_9466.html
  • 25. Rządkowski, W., Klik, P., Tracz, J., Kowalik, M. Case study of composite chassis manufacturing process using low temperature molds tempered with gradual heat annealing process. Advances in Science and Technology Research Journal. 2022; 16(3): 12–21. doi:10.12913/22998624/147368.
  • 26. Nazarczuk, M., Cader, M., Kowalik, M., Jankowski, M. Proposition of the methodology of the robotised part replication implemented in industry 4.0 paradigm. W: Szewczyk, R., Zieliński, C., Kaliczyńska, M., red. Automation 2019: Progress in Automation, Robotics and Measurement Techniques. T. 920. Advances in Intelligent Systems and Computing. 2020; 457–472. doi:10.1007/978-3-030-13273-6_43
  • 27. Joel, E. Buntine. Design of a carbon fibre monocoque for a Formula SAE racing car, UNSW Canberra at ADFA.
  • 28. Chad, A., Bruns, B., Hammond J, Lutter J. Formula SAE Impact Attenuator Testing, 2010; 35–46.
  • 29. Hiller, M. Design of a carbon fiber composite monocoque chassis for a formula style vehicle, Lee Honors College, 2020.
  • 30. Shi, L., Rice, K. Carbon fibre composite monocoque chassis for a formula student race car, Monash Motorsport, 2019.
  • 31. XC110 210 g 2 × 2 Twill 3k Prepreg Carbon Fibre manufactured by Easy composites Ltd, Stoke-onTrent, England. 2020, available online: https://www. easycomposites.co.uk/xc110-210g-22-twill-3k-prepreg-carbon-fibre (accessed on December 2020).
  • 32. 3.2 mm (1/8”) CellAluminium Honeycombhttps://www. easycomposites.eu/3mm-aluminium-honeycomb
  • 33. Rządkowski, W., Jan, T., Adam, C., Kamil, G., Hubert, G., Palka, M., Kowalik, M. Evaluation of bonding gap control methods for an epoxy adhesive joint of carbon fiber tubes and aluminum alloy inserts. Materials, 2021; 14, 1–13. https://doi. org/10.3390/ma14081977
  • 34. Kłonica M. Analysis of the effect of selected factors on the strength of adhesive joints. IOP Conference Series: Materials Science and Engineering. 2018; 393. DOI 10.1088/1757-899X/393/1/012041.
  • 35. Skoczylas, J., Kłonica, M., Samborski S. A study on the FRP composite’s matrix damage resistance by means of elastic wave propagation analysis. Composite Structures. 2022; 297. DOI 10.1016/j. compstruct.2022.115935
  • 36. Lufinka, A. 2017. Crash Test of the Student Racing Car Impact Attenuator. In Proceedings of the 40th International Conference on Modern Development in Management, Economics and Human Resources 1–4. Czech University of Life Sciences Prague. Available at https://dspace.tul.cz/ handle/15240/31384
  • 37. Fahland, J., Hoff, C., Brelin-Fornari, J. Evaluating Impact Attenuator Performance for a Formula SAE Vehicle. SAE International Journal of Passenger Cars - Mechanical Systems. 2011; 4: 836–847. 10.4271/2011-01-1106.
  • 38. Coppola, L., De Marco, B., Niola, V., Sakhnevych, A., Timpone, F. Impact attenuator optimum design for a FSAE racing car by numerical and experimental crash analysis. Int. J Automot. Technol. 2020; 21: 1339–1348. https://doi.org/10.1007/ s12239-020-0126-4
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9aa336ab-4c50-488f-9de3-0b1bd4f4a98f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.