PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The utilization of the mesoporous Ti-SBA-15 catalyst in the epoxidation of allyl alcohol to glycidol and diglycidyl ether in the water medium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents the studies on the optimization the process of allyl alcohol epoxidation over the Ti-SBA-15 catalyst. The optimization was carried out in an aqueous medium, wherein water was introduced into the reaction medium with an oxidizing agent (30 wt% aqueous solution of hydrogen peroxide) and it was formed in the reaction medium during the processes. The main investigated technological parameters were: the temperature, the molar ratio of allyl alcohol/hydrogen peroxide, the catalyst content and the reaction time. The main functions the process were: the selectivity of transformation to glycidol in relation to allyl alcohol consumed, the selectivity of transformation to diglycidyl ether in relation to allyl alcohol consumed, the conversion of allyl alcohol and the selectivity of transformation to organic compounds in relation to hydrogen peroxide consumed. The analysis of the layer drawings showed that in water solution it is best to conduct allyl alcohol epoxidation in direction of glycidol (selectivity of glycidol 54 mol%) at: the temperature of 10–17°C, the molar ratio of reactants 0.5–1.9, the catalyst content 2.9–4.0 wt%, the reaction time 2.7–3.0 h and in direction of diglycidyl ether (selectivity of diglycidyl ether 16 mol%) at: the temperature of 18–33°C, the molar ratio of reactants 0.9–1.65, the catalyst content 2.0–3.4 wt%, the reaction time 1.7–2.6 h. The presented method allows to obtain two very valuable intermediates for the organic industry.
Rocznik
Strony
23--31
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Institute of Organic Chemical Technology, Pułaskiego 10, 70-322 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Institute of Organic Chemical Technology, Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Organic Chemical Technology, Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Mechanical Engineering and Mechatronics, Institute of Materials Science and Engineering, Piastów 19, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Mechanical Engineering and Mechatronics, Institute of Materials Science and Engineering, Piastów 19, 70-322 Szczecin, Poland
  • 2West Pomeranian University of Technology, Szczecin, Faculty of Mechanical Engineering and Mechatronics, Institute of Materials Science and Engineering, Piastów 19, 70-322 Szczecin, Poland
  • Pomeranian Medical University, Dermatopharmacotherapy Division, Department of Dermatology, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
Bibliografia
  • 1. Xu, R., Pang, W., Yo, J., Huo, Q. & Chen, J. (2007). Chemistry of zeolites and related porous materials. Singapore, Republic of Singapore: Wiley.
  • 2. Oyama, T. (2008). Mechanisms in homogeneous and heterogeneous epoxidation catalysis. Amsterdam, Netherlands: Elsevier.
  • 3. Wróblewska, A. & Fajdek, A. (2010). Epoxidation of allyl alcohol to glycidol over the microporous TS-1 catalyst. J. Hazard. Mater. 35(2), 258–265. DOI: 10.1016/j.jhazmat.2010.02.088.
  • 4. Wróblewska, A. (2012). Optimization of the reaction parameters of epoxidation of allyl alcohol with hydrogen peroxide over TS-2 catalysts. Appl. Catal. A: General 309(2), 192–200. DOI: 10.1016/j.apcata.2006.05.004.
  • 5. Wróblewska, A., Fajdek, A. & Wajzberg, J. (2008). Epoxidation of allyl alcohol to glycidol over titanium-silicalite Ti-beta and Ti-MCM-41 catalysts. J. Adv. Oxid. Technol. 11(3), 468–476.
  • 6. Fajdek, A., Wróblewska, A. & Milchert, E. (2012). Clean synthesis of 2-methylglycidol over a novel titanosilica catalyst – Ti-MWW under autogenic pressure. Int. J. Chem. Reac. Eng. 10, A10. DOI: 10.1515/1542-6580.2898.
  • 7. Wu, P. & Tatsumi, T. (2003). Postsynthesis, characterization, and catalytic properties in alkene epoxidation of hydrothermally stable mesoporous Ti-SBA-15. J. Catal. 214, 317–326. DOI: 10.1021/cm010910v.
  • 8. Wróblewska, A. & Milchert, E. (2009). Liquid phase epoxidation of allylic compounds with hydrogen peroxide at autogenic and atmospheric pressure over mesoporous Ti-MCM-48 catalyst. J. Adv. Oxid. Technol. 12(2), 170–177.
  • 9. Wróblewska, A. & Makuch, E. (2012). The utilization of Ti-SBA-15 catalyst in the epoxidation of allylic alcohols. Reac. Kinet. Mech. Catal. 105, 451–468. DOI: 10.1007/s11144-011-0405-1.
  • 10. Wu, P. & Tatsumi, T. (2002). Postsynthesis, characterization, and catalytic properties in alkene epoxidation of hydrothermally stable mesoporous Ti-SBA-15. Chem. Mater. 14, 1657–1664. DOI: 10.1021/cm010910v.
  • 11. Wittmann, G., Demeester, K., Dombi, A., Dewulf, J. & Van Langenhove, H. (2005). Preparation, structural characterization and photocatalytic activity of mesoporous Ti-silicates. Appl. Catal.: Environmental 61, 47–57. DOI: 10.1016/j.apcatb.2005.04.010.
  • 12. Berube, F., Kleitz, F. & Kaliaguine, S. (2009). Surface properties and epoxidation catalytic activity of Ti-SBA-15 prepared by direct synthesis. J. Mater. Sci. 44, 6727–6735. DOI: 10.1007/s10853-009-3566-9.
  • 13. Berube, F., Kleitz, F. & Kaliaguine, S. (2008). A comprehensive study of titanium-substituted SBA-15 mesoporous materials prepared by direct synthesis. J. Phys. Chem. C 112, 14403–14411. DOI: 10.1021/jp803853m.
  • 14. Milchert, E. & Wróblewska, A. (1996). Synthesis of Glycidol. Przem. Chem. 75(10), 367–368.
  • 15. Hanson, R. (1991). The synthetic methodology of nonracemic glycidol and related 2,3-epoxy alcohols. Chem. Rev. 91, 437–475.
  • 16. Dworak, A., Trzebicka, B., Wałach, W. & Baran, K. (1999). Polyglycidol –block-poly(ethylene oxide) – block – polyglycidol: synthesis and swelling properties. Reac. Funct. Polym. 42, 31–36.
  • 17. Toshima, K., Okuno, Y. & Matsumura, S. (2003). Glycidol – carbohydrate hybrids – a new family of DNA alkylating agents. Bioorg. Med. Chem. Lett. 13(19), 3281–3283. DOI: 10.1016/S0960-894X(03)00659-0.
  • 18. Aragones, S., Bravo, F., Diaz, Y., Matheu, M. & Catillon, S. (2003). Stereoselective synthesis of α-isonucleosides. Terahedron Lett. 44, 3771–3773. DOI: 10.1016/S0040-4039(03)00743-3.
  • 19. Cassel, S., Debaig, C., Benvegnu, T., Chaimbault, P., Lafosse, M., Plusquellec, D. & Rollin, P. (2001). Original synthesis of linear branched and cyclic oligoglycerol standards. Eur. J. Org. Chem. 875–896. DOI: 10.1002/1099-0690(200103).
  • 20. Hauck, F.P. & Jacobs, G.A. (1981). Anti-arrhythmia agents. US Patent Application No. 4279902. Alexandria: United States Patent and Trademark Office.
  • 21. Rieu, J.P., Patoiseau, J.F., John, G., Legrand, B. & Verscheure, Y. (2003). Substituted 1-(4-piperydyl)-3-(akrylisothioureas their preparation and their therapeutic application. US Patent Application No. 6531469 B1. Alexandria: United States Patent and Trademark Office.
  • 22. Lukyanenko, G. & Reder, A.S. (1988). Macroheterocycles. Part 42. A facile synthesis of dihydroxy cryptands and their dehydroxylation J. Chem. Soc., Perkin Trans. 2533–2536.
  • 23. Machleder, W.H., Bollinger, J.M. (1981). Multipurpose hydrocarbon fuel and lubricating oil additive. US Patent Application No. 4259086. Alexandria: United States Patent and Trademark Office.
  • 24. Ermakov, A.S., Bulatov, P.V. & Tartakovsky, V.A. (1977). The reaction of sulfamic acid derivatives with epoxides. Reaction of sulfamates with diglycidyl and allylglycidyl ether and synthesis of the corresponding aminathes. Rus. Chem. Bull. 46(3), 487–490.
  • 25. Brill, W.F. (1963). The origin of epoxides in the liquid phase oxidation of olefins with molecular oxygen. J. Am. Chem. Soc. 85, 141–145.
  • 26. Golowa, B.M., Motowiljak, L.W., Politanskij, S.F., Stjepanow, M.W. & Czeljadin, W.T. (1974). Opredelenie osnownych komponentow processa poluczenija glicerina putem gidroksilirowanja allilowago spirta. Zavod. Lab. 40, 1192–1195.
  • 27. Montgomery, D.C. (1976). Design and analysis of experiments. New York, USA: Wiley.
  • 28. Nalimowv, W.W. & Czernowa, V.A. (1967). Statistical methods of experiments planning. Warsaw, Poland: Scientific-Technical Publishers (in Polish).
  • 29. Achnazarova, S.Ł. & Kafarov, V.V. (1982). Optimization of experiments in chemistry and chemical technology. Warsaw, Poland: Scientific-Technical Publishers (in Polish).
  • 30. Polański, Z. (1984). Experiments planning in technique. Warsaw, Poland: Scientific-Technical Publishers (in Polish).
  • 31. Polański, Z. & Górecka-Polańska, R. (1992). Cadex: ESDET 2.2. program, Planning and statistical analysis of experimental investigations applying determined statistical analysis. Cracow, Poland: Department of Technical Development and Implementation (in Polish).
  • 32. Zieliński, R. Statistical tables. (1992). Warsaw, Poland: Scientific Publishers (in Polish).
  • 33. Findeisen, W., Szymanowski, I. & Wierzbicki, A. (1980). Theory and calculating methods of optimization. Warsaw, Poland: Science Publishers (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9aa179e2-4e60-4cbf-9654-3ae23ef4920b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.