PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low temperature broad band dielectric spectroscopy of multiferroic Bi6Fe2Ti3O18 ceramics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present research the tool of broadband dielectric spectroscopy was utilized to characterize dielectric behavior of Bi6Fe2Ti3O18is (BFTO) Aurivillius-type multiferroic ceramics. Dielectric response of BFTO ceramics was studied in the frequency domain (Δν=0.1Hz - 10MHz) within the temperature range ΔΤ=-100°C - 200°C. The Kramers-Kronig data validation test was employed to validate the impedance data measurements and it was found that the measured impedance data exhibited good quality justifying further analysis. The residuals were found to be less than 1%, whereas the "chi-square" parameter was within the range χ2~-10-7 -10-5. Experimental data were analyzed using the circle fit of simple impedance arc plotted in the complex Z”-Z` plane (Nyquist plot). The total ac conductivity of the grain boundaries was thus revealed and the activation energy of ac conductivity for the grain boundaries was calculated. It was found that activation energy of ac conductivity of grain boundaries changes from ΕA=0.20eV to ΕA=0.55eV while temperature rises from Τ=-100°C up to Τ=200°C. On the base of maxima of the impedance semicircles (ωmτm=l) the relaxation phenomena were characterized in terms of the temperature dependence of relaxation times and relevant activation energy was calculated (ΕA=0.55eV).
Twórcy
Bibliografia
  • [1] E. Barsoukov, J. R Macdonald (Eds), Impedance Spectroscopy, Theory, Experiment, and Applications, second ed., John Wiley & Sons, 2005.
  • [2] B. A. Boukamp, Electrochemical impedance spectroscopy in solid state ionics: recent advances. Solid State Ionics 169, 65-73 (2004).
  • [3] E. J. Abram, D. C. Sinclair, A. R. West, A Strategy for Analysis and Modelling of Impedance Spectroscopy Data of Electroceramics: Doped Lanthanum Gallate, Journal of Electroceramics 10 ,165-177(2003).
  • [4] N. A. Lomanova, M. I. Morozov, V. L. Ugolkov, V. V. Gusarov, Properties of Aurivillius phases in the Bi4Ti3O12 – BiFeO3 system, Inorg. Mater. 42, 189- 195 (2006).
  • [5] W. Erenstein, N. D. Mathur, J. F. Scott. Mutiferroic and magnetoelectric materials. Nature 442, 759-65 (2006).
  • [6] A. Lisińska-Czekaj, Wielofunkcyjne materiały ceramiczne na osnowie tytanianu bizmutu. Wydawnictwo Gnome, Uniwersytet Śląski, Katowice 2012.
  • [7] E. Jartych, M. Mazurek, A. Lisińska-Czekaj, D. Czekaj, Hyperfine interactions in some Aurivillius Bim+1Ti3Fem-3O3m+3 compounds. Journal of Magnetism and Magnetic Materials 322, 51-55 (2010).
  • [8] A. Lisińska-Czekaj, D. Czekaj, Ferroelektryki o warstwowej strukturze perowskitopodobnej BWPT. W: Z. Surowiak (Red.) Elektroceramika ferroelektryczna. Wydawnictwo Uniwersytetu Śląskiego, 105-162, Katowice (2004).
  • [9] E. Jartych, K. Gąska, J. Przewoźnik, Cz. Kapusta, A. Lisińska-Czekaj, D. Czekaj, Z. Surowiec. Hyperfine interactions and irreversible magnetic behavior in multiferroic Aurivillius compounds. Nukleonika 58, 1 47-51 (2013).
  • [10] A. Lisińska-Czekaj, Fabrication of Bi6Fe2Ti3O18 ceramics by mixed oxide method. Materials Science Forum 730-732, 100-104 (2013).
  • [11] A. Lisińska-Czekaj, D. Czekaj, Characterization of Bi6Fe2Ti3O18 ceramics with impedance spectroscopy. Materials Science Forum 730-732, 76-81(2013).
  • [12] K. Srinivas, P. Sarah, S. V. Suryanarayana, Impedance spectroscopy study of polycrystalline Bi6Fe2Ti3O18, Bulletin of Materials Science 26, 2, 247-253(2003).
  • [13] D. Zientara, M. Bućko, J. Polnar, Synthesis of Bi6Fe2aTi3O18 Aurivillius phase by wet chemical methods, Advances in Science and Technology 67, 164-169 (2010).
  • [14] M. Bućko, J. Polnar, J. Przewoźnik, J. Żukrowsk,i Cz. Kapusta, Magnetic properties of the Bi6Fe2Ti3jO18 Aurivillius phase prepared by hydrothemial method, Advances in Science and Technology 67, 170-175 (2010.
  • [15] B. A. Boukamp, A linear Kronig-Krarners transform test for immitance data validation, J. Electrochem. Soc. 142 (1995) 1885-1894.
  • [16] D. Czekaj, A. Lisinska-Czekaj, T. Orkisz, J. Orkisz, G. Smalarz, Impedance spectroscopic studies of sol-gel derived barium strontium titanate thin films. Journal of the European Ceramic Society 30,465-470 (2010).
  • [17] H. Bernard. A. Lisinska-Czekaj, J. Dzik, K. Osińska, D. Czekaj, Fabrication, structural and ac impedance studies of layer-structured Bi4Ti3O12 ceramics, Archives of Metallurgy and Materials 56, 4, 1137-1148 (2011).
  • [18] G. Brankovic, Z. Brankovic, V. D. Jovic, J. A. Varela, Fractal approach to ac impedance spectroscopy studies of ceramic materials. Journal of Electroceramics 7, 89-94 (2001).
  • [19] A. Osak, J. Piwowarczyk. Studies of the dc and ac hopping electrical conductivity in ferroelectric Pb(Fe1/3Sb2/3)%TiyZr2O3, Technical Transactions. Fundamental Sciences. 1-NP 59-75 (2011).
Uwagi
EN
The present research was supported by University of Silesia in Katowice, Poland from the funds for science - research potential (NO 1S-0800-001-1-05-01).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a9dff1f-1bbe-4e2f-a9c8-413670a460e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.