PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

New structure of dielectric resonator with greater separation of higher order modes from fundamental mode

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a new dielectric resonator structure that allows to obtain a larger distance between the resonant frequency of TE011 mode and higher resonant modes: HE111, TM011 and EH111. Obtaining a sufficiently large frequency distance of the higher modes from the basic one allows realization of filters with much better spurious response. The proposed structure is based on a ring dielectric resonator in which the outer edge is flat and cone-shaped regions are cut symmetrically (from the top and bottom) to form the inner edge. To determine the resonant frequencies of the new structure the radial mode matching method has been applied. The proportions of the dimensions of the cut volume of the dielectric resonator were investigated in order to obtain the maximum frequency shift of higher resonant modes from the fundamental one (TE011). The obtained results show that it is possible to achieve a much wider spurious free frequency range than in the structures used so far.
Twórcy
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
Bibliografia
  • [1] Y. Kobayashi, M. Miura, “Optimum design of shielded dielectric rod and ring resonators for obtaining the best mode separation”; in Proc. IEEE MTT International Microwave Symposium, San Francisco 1984. https://doi.org/10.1109/MWSYM.1984.1131732
  • [2] K. A. Zaki, A. Atia, “Modes in dielectric loaded waveguide and resonators”; IEEE Trans. on Microwave Theory and Techniques, Vol. 31, No. 12, pp. 1039-1045, Dec. 1983. https://doi.org/10.1109/TMTT.1983.1131658
  • [3] S. W. Cheng, K. A. Zaki, “Dielectric ring resonator loaded in waveguide and on substrate”; IEEE Trans. on Microwave Theory and Techniques, vol. 39, vo. 12, pp. 2069-2076, Dec. 1991. https://doi.org/10.1109/22.106548
  • [4] H. C. Chang, K. A. Zaki, “Unloaded Q’s of axially asymmetric modes of dielectric resonators”; in Proc. IEEE MTT International Microwave Symposium, Long Beach, 1989. https://doi.org/10.1109/MWSYM.1989.1031849
  • [5] K. V. Srivastava, V. V. Mishra, A. Biswas, “A modified ring dielectric resonator with improved mode separation and its tunability characteristics in MIC environment”; IEEE Trans. on Microwave Theory and Techniques, Vol. 53, No. 6, pp. 1960-1967, June 2005. https://doi.org/10.1109/TMTT.2005.848837
  • [6] J. K. Plourde and C .L. Ren, “Application of dielectric resonators in microwave components”; IEEE Trans. on Microwave Theory and Techniques, Vol. 29, No. 8, pp. 754-770, Aug 1981. https://doi.org/10.1109/TMTT.1981.1130444
  • [7] G. Lin, A. Coillet, Y. K. Chembo, “Nonlinear photonics with high-Q whispering gallery-mode resonators”; Advances in Optics Photonics, vol. 9, no. 4, pp. 828-890, Dec 2017. https://doi.org/10.1364/AOP.9.000828
  • [8] J. Krupka, “Precise measurements of the complex permittivity of dielectric materials at microwave frequencies”, Materials Chemistry and Physics, vol. 79, no.2-3, pp. 195-198, April 2003. https://doi.org/10.1016/S0254-0584(02)00257-2
  • [9] A. Can Gungor, M. Olszewska-Placha, M. Celuch, J. Smajic, J. Leuthold, “Advanced modelling techniques for resonator based dielectric and semiconductor materials characterization”, MPDI Applied Sciences, vol.10, 8533, Nov 2020. https://doi.org/10.3390/app10238533
  • [10] R. Saliminejad, M. R. Ghafourifard, “A novel and accurate method for designing dielectric resonator filter”, Progress in Electromagnetics Research B, Vol. 8, pp. 293-306, 2008. http://dx.doi.org/10.2528/PIERB08070602
  • [11] J. Krupka, A. Abramowicz, K. Derzakowski, “Design and realization of high-Q triple dielectric resonator filters with wide tuning range”, in Proc. 29th European Microwave Conf., pp. 103-106, Munich, Oct. 1999. http://dx.doi.org/10.1109/MMM.2009.933591
  • [12] Sz. Maj, J. Modelski, A. Abramowicz, “Computer-Aided Design of Mechanical Tuning Structures of a Dielectric Resonator on Microstrip Substrate”, in Proc. 17th European Microwave Conf., pp. 859-864, Rome, Sept 1987. http://dx.doi.org/10.1109/EUMA.1987.333764
  • [13] A. Abramowicz, J. Modelski, “Design of Intermediate-Bandwidth Dielectric Resonator Filters”, in Proc. 22nd European Microwave Conf., pp. 1325-1330, Helsinki, Aug. 1992. https://doi.org/10.1109/EUMA.1992.335888
  • [14] S. B. Cohn, “Microwave bandpass filters containing high-Q dielectric resonators”, IEEE Trans. on Microwave Theory and Techniques., vol. 16, pp. 218 -227, Apr 1968. https://doi.org/10.1109/TMTT.1968.1126654
  • [15] S. K. K. Dash, T. Khan, A. De, “Modelling of dielectric resonator antennas using numerical methods: a review", Journal of Microwave Power and Electromagnetic Energy, vol. 50, no. 4, pp. 269-293, Jan. 2017. https://doi.org/10.1080/08327823.2016.1260677
  • [16] H. Twu Chen, Y. T. Cheng, S. Y. Ke, „Probe-fed section-spherical dielectric resonator antennas”. in Proc. of the IEEE Asia Pacific Microwave Conference, vol. 2, pp. 359-362, Nov. 1999. https://doi.org/10.1109/APMC.1999.829875
  • [17] P. Abdulla, A. Chakraborty, “Rectangular waveguide-fed hemispherical dielectric resonator antenna” Progress in Electromagnetics Research.83: pp. 225-244, Jan. 2008. http://dx.doi.org/10.2528/PIER08050701
  • [18] T. Itoh, R. Rudokas, “New method for computing the resonant frequencies of dielectric resonators”, IEEE Trans. on Microwave Theory and Techniques,. Vol. 25. No. 1, pp.52-54, Jan. 1979. https://doi.org/10.1109/TMTT.1977.1129030
  • [19] M. W. Pospieszalski, “Cylindrical dielectric resonators and their applications on TEM-line microwave circuits”, IEEE Trans. On Microwave Theory and Techniques, Vol. 27, No. 3, pp.233-238, March 1979. https://doi.org/10.1109/TMTT.1979.1129599
  • [20] J. Krupka, K. Derzakowski, J. G. Hartnett, “Measurements of the complex permittivity and the complex permeability of low and medium loss isotropic and uniaxially anisotropic metamaterials at microwave frequencies”, Measurement Science and Technology, vol. 20, Issue 10, pp.1004-1008, Oct. 2009. http://dx.doi.org/10.1088/0957-0233/20/10/105702
  • [21] K. Derzakowski, “Full wave analysis of multilayered cylindrical resonator containing uniaxial anisotropic media”, Progress in Electromagnetics Research M, vol. 101, pp. 101-115, 2021. http://dx.doi.org/10.2528/PIERM20120804
  • [22] https://www.ansys.com/products/electronics/ansys-hfss - Ansys HFSS|3D High Frequency Simulation Software
  • [23] https://www.qwed.com.pl/ quickwave.html - QuickWave Software for electromagnetic design and simulations based on conformal FDTD method
  • [24] https://www.3ds.com/products/simulia/cst-studio-suite - CST Studio Suite
  • [25] K. S. P. Hehenberger, S. Caizzone, A. G. Yarovoy, “Additive Manufacturing of Linear Continuous Permittivity Profiles and Their Application to Cylindrical Dielectric Resonator Antennas”, IEEE open Journal of Antennas and Propagation, vol. 4, pp.373-382, March 2023. https://doi.org/10.1109/OJAP.2023.3258147
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a99f53d-a670-43b8-a28d-212ad94518d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.