PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical investigation of slab waveguide sensor using anisotropic metamaterial

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A three-layer slab waveguide with air as a substrate, lossless dielectric as a guiding film, and anisotropic double negative material as a cladding is explored as an optical sensor for refractometry applications. The double negative material is assumed to have a negative electric permittivity and magnetic permeability only along the wave propagation direction. The sensitivity of a guided mode to the variation in the refractive index of air substrate is derived and studied for the first few guided modes. It is found that the sensitivity can be enhanced with decreasing the guided light frequency as well as the film thickness. The sensitivity can reach 100% for some waveguide configurations.
Czasopismo
Rocznik
Strony
405--417
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
autor
  • Physics Department, Islamic University of Gaza, P.O.Box 108, Gaza, Palestinian Authority;
Bibliografia
  • [1] TIEFENTHALER K., LUKOSZ W., Integrated optical switches and gas sensor, Optics Letters 9(4), 1984, pp. 137–139.
  • [2] TIEFENTHALER K., LUKOSZ W., Sensitivity of grating couplers as integrated-optical chemical sensors, Journal of the Optical Society of America B 6(2), 1989, pp. 209–220.
  • [3] TAYA S.A., EL-AGEZ T.M., Comparing optical sensing using slab waveguides and total internal reflection ellipsometry, Turkish Journal of Physics 35(1), 2011, pp. 31–36.
  • [4] EL-AGEZ T., TAYA S., Theoretical spectroscopic scan of the sensitivity of asymmetric slab waveguide sensors, Optica Applicata 41(1), 2011, pp. 89–95.
  • [5] WAECHTER H., LITMAN J., CHEUNG A.H., BARNES J.A., LOOCK H.-P., Chemical sensing using fiber cavity ring-down spectroscopy, Sensors 10(3), 2010, pp. 1716–1742.
  • [6] WENWEI NIU, MING HUANG, ZHE XIAO, JINGJING YANG, Nonlinear planar optical waveguide sensor loaded with metamaterials, Optoelectronics and Advanced Materials: Rapid Communications 5(10), 2011, pp. 1039–1045.
  • [7] TAYA S.A., EL-FARRAM E.J., EL-AGEZ T.M., Goos–Hänchen shift as a probe in evanescent slab waveguide sensors, International Journal of Electronics and Communications (AEÜ) 66(3), 2012, pp. 204–210.
  • [8] KUSWANDI B., Simple optical fibre biosensor based on immobilised enzyme for monitoring of trace heavy metal ions, Analytical and Bioanalytical Chemistry 376(7), 2003, pp. 1104–1110.
  • [9] TAYA S.A., EL-AGEZ T.M., Slab waveguide sensor based on amplified phase change due to multiple total internal reflections, Turkish Journal of Physics 36(1), 2012, pp. 67–76.
  • [10] UDD E., An overview of fiber-optic sensors, Review of Scientific Instruments 66(8), 1995, pp. 4015 –4030.
  • [11] CHIEN F.-C., CHEN S.-J., A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes, Biosensors and Bioelectronics 20(3), 2004, pp. 633–642.
  • [12] HOMOLA J., YEE S.S., GAUGLITZ G., Surface plasmon resonance sensors: Review, Sensors and Actuators B: Chemical 54(1–2), 1999, pp. 3–15.
  • [13] KULLAB H.M., TAYA S.A., Transverse magnetic peak type metal-clad optical waveguide sensor, Optik – International Journal for Light and Electron Optics 125(1), 2014, pp. 97–100.
  • [14] SKIVESEN N., HORVATH R., PEDERSEN H.C., Optimization of metal-clad waveguide sensors, Sensors and Actuators B: Chemical 106(2), 2005, pp. 668–676.
  • [15] KULLAB H., TAYA S.A., EL-AGEZ T.M., Metal-clad waveguide sensor using a left-handed material as a core layer, Journal of the Optical Society of America B 29(5), 2012, pp. 959–964.
  • [16] SKIVESEN N., HORVATH R., PEDERSEN H., Peak-type and dip-type metal-clad waveguide sensing, Optics Letters 30(13), 2005, pp. 1659–1661.
  • [17] KULLAB H.M., TAYA S.A., Peak type metal-clad waveguide sensor using negative index materials, International Journal of Electronics and Communications (AEÜ) 67(11), 2013, pp. 984–986.
  • [18] TAYA S.A., EL-AGEZ T.M., Optical sensors based on Fabry–Perot resonator and fringes of equal thickness structure, Optik – International Journal for Light and Electron Optics 123(5), 2012, pp. 417–421.
  • [19] SKIVESEN N., HORVATH R., THINGGAAED S., LARSEN N.B., PEDERSEN H.C., Deep-probe metal-clad waveguide biosensors, Biosensors and Bioelectronics 22(7), 2007, pp. 1282–1288.
  • [20] TAYA S.A., EL-AGEZ T.M., A reverse symmetry optical waveguide sensor using a plasma substrate, Journal of Optics 13(7), 2011, article 075701.
  • [21] DENSMORE A., XU D.X., WALDRON P., JANZ S., CHEBEN P., LAPOINTE J., DELAGE A., LAMONTAGNE B., SCHMID J.H., POST E., A silicon-on-insulator photonic wire based evanescent field sensor, IEEE Photonics Technology Letters 18(23), 2006, pp. 2520–2522.
  • [22] LU FA SHEN, JIA-CHENG QIU, ZI HUA WANG, Guided modes in a slab waveguide with air core layer and left-handed materials claddings, Progress in Electromagnetics Research Symposium Proceedings, Suzhou, China, September 12–16, 2011, pp. 1043–1048.
  • [23] VESELAGO V.G., The electrodynamics of substances with simultaneously negative values of ε and μ, Soviet Physics Uspekhi 10(4), 1968, pp. 509–514.
  • [24] VALANJU P.M., WALSER R.M., VALANJU A.P., Wave refraction in negative-index media: always positive and very inhomogenous, Physical Review Letters 88(18), 2002, article 187401.
  • [25] PENDRY J.B., HOLDEN A.J., ROBBINS D.J., STEWART W.J., Magnetism from conductors and enhanced nonlinear phenomena, IEEE Transactions on Microwave Theory and Techniques 47(11), 1999, pp. 2075–2084.
  • [26] BOARDMAN A., EGAN P., VELASCO L., KING N., Control of planar nonlinear guided waves and spatial solitons with a left-handed medium, Journal of Optics A: Pure and Applied Optics 7(2), 2005, pp. S57–S67.
  • [27] SHELBY R.A., SMITH D.R., SCHULTZ S., Experimental verification of a negative index of refraction, Science 292(5514), 2001, pp. 77–79.
  • [28] PENG DONG, HONG WEI YANG, Guided modes in slab waveguides with both double-negative and single-negative materials, Optica Applicata 40(4), 2010, pp. 873–882.
  • [29] TAYA S.A., EL-FARRAM E.J., ABADLA M.M., Symmetric multilayer slab waveguide structure with a negative index material: TM case, Optik – International Journal for Light and Electron Optics 123(24), 2012, pp. 2264–2268.
  • [30] ZI HUA WANG, ZHONG YIN XIAO, SU PING LI, Guided modes in slab waveguides with a left handed material cover or substrate, Optics Communications 281(4), 2008, pp. 607–613.
  • [31] TAYA S.A., QADOURA I.M., Guided modes in slab waveguides with negative index cladding and substrate, Optik – International Journal for Light and Electron Optics 124(13), 2013, pp. 1431–1436.
  • [32] TAYA S.A., QADOURA I.M., EL-WASIFE K.Y., Scaling rules for a slab waveguide structure comprising nonlinear and negative index materials, International Journal of Microwave and Optical Technology (IJMOT) 7(5), 2012, pp. 349–357.
  • [33] TAYA S.A., KULLAB H.M., QADOURA I.M., Dispersion properties of slab waveguides with double negative material guiding layer and nonlinear substrate, Journal of the Optical Society of America B 30(7), 2013, pp. 2008–2013.
  • [34] BAE-IAN WU, GRZEGORCZYK T.M., YAN ZHANG, JIN AU KONG, Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability, Journal of Applied Physics 93(11), 2003, p. 9386.
  • [35] ABADLA M.M., TAYA S.A., Excitation of TE surface polaritons on metal–NIM interfaces, Optik – International Journal for Light and Electron Optics 125(3), 2014, pp. 1401–1405.
  • [36] ZHENG LIU, LIANGBIN HU, ZHIFANG LIN, Enhancing photon tunnelling by a slab of uniaxially anisotropic left-handed material, Physics Letters A 308(4), 2003, pp. 294–301.
  • [37] TAO PAN, GUO-DING XU, TAO-CHENG ZANG, LEI GAO, Study of a slab waveguide loaded with dispersive anisotropic metamaterials, Applied Physics A 95(2), 2009, pp. 367–372.
  • [38] CORY H., BARGER A., Surface-wave propagation along a metamaterial slab, Microwave and Optical Technology Letters 38(5), 2003, pp. 392–395.
  • [39] LIANGBIN HU, CHUI S.T., Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials, Physical Review B 66(8), 2002, article 085108.
  • [40] TAYA S.A., ELWASIFE K.Y., Guided modes in a metal-clad waveguide comprising a left-handed material as a guiding layer, International Journal of Research and Reviews in Applied Sciences 13(1), 2012, pp. 294–305.
  • [41] SHADRIVOV I.V., Nonlinear guided waves and symmetry breaking in left-handed waveguides, Photonics and Nanostructures – Fundamentals and Applications 2(3), 2004, pp. 175–180.
  • [42] TAYA S.A., ELWASIFE K.Y., KULLAB H.M., Dispersion properties of anisotropic-metamaterial slab waveguide structure, Optica Applicata 43(4), 2013, pp. 857–869.
  • [43] ZI HUA WANG, SU PING LI, Quasi-optics of the surface guided modes in a left-handed material slab waveguide, Journal of the Optical Society of America B 25(6), 2008, pp. 903–908.
  • [44] KOSCHNY T., MOUSSA R., SOUKOULIS C.M., Limits on the amplification of evanescent waves of left-handed materials, Journal of the Optical Society of America B 23(3), 2006, pp. 485–489.
  • [45] TAYA S.A., KULLAB H.M., Optimization of transverse electric peak-type metal-clad waveguide sensor using double-negative materials, Applied Physics A 116(4), 2014, pp. 1841–1846.
  • [46] TAYA S.A., Slab waveguide with air core layer and anisotropic left-handed material claddings as a sensor, Opto-Electronics Review 22(4), 2014, pp. 252–257.
  • [47] TAYA S.A., P-polarized surface waves in a slab waveguide with left-handed material for sensing applications, Journal of Magnetism and Magnetic Materials 377, 2015, pp. 281–285.
  • [48] UPADHYAY A., PRAJAPATI Y.K., SINGH V., SAINI J.P., Comprehensive study of reverse index waveguide based sensor with metamaterials as a guiding layer, Optics Communications 348, 2015, pp. 71–76.
  • [49] UPADHYAY A., PRAJAPATI Y.K., SINGH V., SAINI J.P., Sensitivity estimation of metamaterial loaded planar waveguide, Optical and Quantum Electronics 47(7), 2015, pp. 2277–2287
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a9951f0-f4a0-4b7c-b1f3-18020bf10f46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.