PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vapor absorption refrigeration under variable environmental conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the Electrolux ammonia-water-hydrogen vapor absorption system (VAS) has been analyzed for cooling load with different heat transfer media. The performance of the VAS under variable environmental conditions was investigated. It has been concluded that a high heat transfer medium is essential to have a high COP system. The cooling load of air had a COP of about 0.31%, where water improved the COP to 15%. This study also indicated that moving from natural convection to forced convection improves the evaporator temperature from -10 °C to -11.6 °C. Mist water and mist ethanol improved the evaporator temperature to -12.8 °C and -13.7 °C respectively. This study emphasizes choosing suitable heat transfer medium with the VAS maximizes the COP of the system, it also indicates that better heat transfer from the condenser such as ground source heat exchanger or pool cooling condenser must be used instead of natural convection with air.
Rocznik
Strony
381--389
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical Engineering, Al Zaytoonah University, Amman, Jordan
autor
  • Department of Alternative Energy Technology, Al Zaytoonah University, Amman, Jordan
  • Department of Electrical and Computer Engineering, Applied Science Private University, Amman, Jordan
  • Faculty of Engineering, Tafila Technical University, P. O. Box 179, 66110, Tafila, Jordan
  • Department of Mechanical and Industrial Engineering, Liwa College, Abu Dhabi, UAE
  • Faculty of Engineering, Tafila Technical University, P. O. Box 179, 66110, Tafila, Jordan
  • Faculty of Environmental Engineering and Energy, Lublin University of Technology, Nadbystrzycka 40B, 20-781 Lublin, Poland
  • Faculty of Engineering, Tafila Technical University, P. O. Box 179, 66110, Tafila, Jordan
Bibliografia
  • 1. Aliane, A., Abboudi, S., Seladji, C., & Guendouz, B. (2016). An illustrated review on solar absorption cooling experimental studies. Renewable and Sustainable Energy Reviews 65, 443–458. https://doi.org/10.1016/j.rser.2016.07.012
  • 2. Altun, A. F., & Kilic, M. (2020). Economic feasibility analysis with the parametric dynamic simulation of a single effect solar absorption cooling system for various climatic regions in Turkey. Renewable Energy, 152, 75–93. https://doi.org/10.1016/j.renene.2020.01.055
  • 3. Arshad, M. U., Ghani, M. U., Ullah, A., Güngör, A., & Zaman, M. (2019). Thermodynamic analysis and optimization of double effect absorption refrigeration system using genetic algorithm. Energy Conversion and Management, 192, 292–307. https://doi.org/10.1016/j.enconman.2019.03.083
  • 4. Batakurki, R. (2017). Studies on performance of solar powered vapour absorption refrigeration. International Journal of Mechanical Engineering and Technology, 8(1), 100–109. http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=8&IType=1http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=8&IType=1
  • 5. Beithou, N., Khalid, M. B., As’ad, S., Alsaqoor, S., Borowski, G., Alshabatat, N., & Andruszkiewicz, A. (2024). Atmospheric water harvesting technology: Review and future prospects. Journal of Ecological Engineering, 25(3), 291–302. https://doi.org/10.12911/22998993/182814
  • 6. Bellos, E., Tzivanidis, C., & Antonopoulos, K. A. (2016). Exergetic, energetic and financial evaluation of a solar driven absorption cooling system with various collector types. Applied Thermal Engineering, 102, 749–759. https://doi.org/10.1016/j.applthermaleng.2016.04.032
  • 7. Chiranjeevi, C., & Srinivas, T. (2016). Influence of vapor absorption cooling on humidification-dehumidification (HDH) desalination. Alexandria Engineering Journal, 55(3), 1961–1967. https://doi.org/10.1016/j.aej.2016.07.026
  • 8. Christopher, S. S., Santosh, R., Ponrajan Vikram, M., Prabakaran, R., Thakur, A. K., & Xu, H. (2021). Optimization of a solar water heating system for vapor absorption refrigeration system. Environmental Progress and Sustainable Energy, 40(1), e13489. https://doi.org/10.1002/ep.13489
  • 9. Dai, Y., & Ma, J. (2017). Efficient solar cooling by using variable-effect LiBr-H2O absorption chiller and linear fresnel solar collector with cavity receiver. ISES Solar World Congress 2017 – IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry 2017, Proceedings, 1667–1674. https://doi.org/10.18086/swc.2017.28.03
  • 10. Dinçer, I., & Kanoglu, Mehmet. (2010). Refrigeration systems and applications. Wiley.
  • 11. Ebrahimnataj Tiji, A., Ramiar, A., & Ebrahimnataj, M. (2020). Comparison the start-up time of the key parameters of aqua-ammonia and water–lithium bromide absorption chiller (AC) under different heat exchanger configurations. SN Applied Sciences, 2, 1522. https://doi.org/10.1007/s42452-020-03270-4
  • 12. Freeman, J., & Markides, C. N. (2024). A solar diffusion-absorption refrigeration system for offgrid cold-chain provision, Part II: System simulation and assessment of performance. Renewable Energy, 230, 120717. https://doi.org/10.1016/j.renene.2024.120717
  • 13. Gomri, R. (2009). Second law comparison of single effect and double effect vapour absorption refrigeration systems. Energy Conversion and Management, 50(5), 1279–1287. https://doi.org/10.1016/j.enconman.2009.01.019
  • 14. Habibzadeh, A., Jafarmadar, S., Habibzadeh, A., Jafarmadar, S., Rashidi, M. M., Rezaei, S. S., & Aghagoli, A. (2017). Energy and exergy analysis of an ejector-absorption refrigeration cycle with using NH3-H2O as the working fluids. IJournal of Environmental Friendly Materials 1( 2). 45-54. https://www.researchgate.net/publication/320125872
  • 15. Hosoz, M., & Kilicarslan, A. (2004). Performance evaluations of refrigeration systems with air-cooled, water-cooled and evaporative condensers. International Journal of Energy Research, 28(8), 683–696. https://doi.org/10.1002/er.990
  • 16. Jain, V., Kachhwaha, S. S., & Sachdeva, G. (2013). Thermodynamic performance analysis of a vapor compression-absorption cascaded refrigeration system. Energy Conversion and Management, 75, 685–700. https://doi.org/10.1016/j.enconman.2013.08.024
  • 17. Jain, V., Sachdeva, G., & Kachhwaha, S. S. (2021). Thermodynamic analysis of ejector-assisted vapour compression-absorption hybrid refrigeration system. International Journal of Ambient Energy, 42(5), 576–585. https://doi.org/10.1080/01430750.2018.1562972
  • 18. Kaneesamkandi, Z., Almujahid, A., Salim, B., Sayeed, A., & AlFadda, W. M. (2023). Enhancement of condenser performance in vapor absorption refrigeration systems operating in arid climatic zones – selection of best option. Energies, 16(21), 7416. https://doi.org/10.3390/en16217416
  • 19. Kaynakli, O., & Kilic, M. (2007). Theoretical study on the effect of operating conditions on performance of absorption refrigeration system. Energy Conversion and Management, 48(2), 599–607. https://doi.org/10.1016/j.enconman.2006.06.005
  • 20. Keçeciler A., Acar H.İ., & Doğan A. (2000) Thermodynamic analysis of the absorption refrigeration system with geothermal energy: an experimental study. Energy Conversion and Management 41(1), 37-48. https://doi.org/10.1016/S0196-8904(99)00091-6
  • 21. Kundu, B., Mondal, P. K., Datta, S. P., & Wong wises, S. (2010). Operating design conditions of a solar-powered vapor absorption cooling system with an absorber plate having different profiles: An analytical study. International Communications in Heat and Mass Transfer, 37(9), 1238–1245. https://doi.org/10.1016/j.icheatmasstransfer.2010.08.012
  • 22. Lima, A. A. S., Leite, G. de N. P., Ochoa, A. A. V., Dos Santos, C. A. C., da Costa, J. A. P., Michima, P. S. A., & Caldas, A. M. A. (2021). Absorption refrigeration systems based on ammonia as refrigerant using different absorbents: Review and applications. Energies 14( 1), 48. https://doi.org/10.3390/en14010048
  • 23. Manu, S., & Chandrashekar, T. K. (2016). A simulation study on performance evaluation of singlestage LiBr–H2O vapor absorption heat pump for chip cooling. International Journal of Sustainable Built Environment, 5(2), 370–386. https://doi.org/10.1016/j.ijsbe.2016.08.002
  • 24. Mussati, S. F., Cignitti, S., Mansouri, S. S., Gernaey, K. V., Morosuk, T., & Mussati, M. C. (2018). Configuration optimization of series flow double-effect water-lithium bromide absorption refrigeration systems by cost minimization. Energy Conversion and Management, 158, 359–372. https://doi.org/10.1016/j.enconman.2017.12.079
  • 25. Nikbakhti, R., Wang, X., Hussein, A. K., & Iranmanesh, A. (2020). Absorption cooling systems – Review of various techniques for energy performance enhancement. Alexandria Engineering Journal 59( 2), 707–738. https://doi.org/10.1016/j.aej.2020.01.036
  • 26. Qandil, A., Othman, A., & Beithou, N. I. (2023). Experimental analysis of atmospheric water harvester using ammonia vapour absorption system. Journal of Ecological Engineering, 24(2), 221–229. https://doi.org/10.12911/22998993/156612
  • 27. Qasem, N. A. A., Zubair, S. M., Abdallah, A. M., Elbassoussi, M. H., & Ahmed, M. A. (2020). Novel and efficient integration of a humidification-dehumidification desalination system with an absorption refrigeration system. Applied Energy, 263, 114659. https://doi.org/10.1016/j.apenergy.2020.114659
  • 28. Razmi, A. R., Arabkoohsar, A., & Nami, H. (2020). Thermoeconomic analysis and multi-objective optimization of a novel hybrid absorption/recompression refrigeration system. Energy, 210, 118559. https://doi.org/10.1016/j.energy.2020.118559
  • 29. Said, S. A. M., Spindler, K., El-Shaarawi, M. A., Siddiqui, M. U., Schmid, F., Bierling, B., & Khan, M. M. A. (2016). Design, construction and operation of a solar powered ammonia-water absorption refrigeration system in Saudi Arabia. International Journal of Refrigeration, 62, 222–231. https://doi.org/10.1016/j.ijrefrig.2015.10.026
  • 30. Sharma, D. K., Sharma, D., & Ali, A. H. H. (2020). A state of the art on solar-powered vapor absorption cooling systems integrated with thermal energy storage. Environmental Science and Pollution Research 27(1), 158–189. https://doi.org/10.1007/s11356-019-06941-x
  • 31. Shirazi, A., Taylor, R. A., White, S. D., & Morrison, G. L. (2016). Transient simulation and parametric study of solar-assisted heating and cooling absorption systems: An energetic, economic and environmental (3E) assessment. Renewable Energy, 86, 955–971. https://doi.org/10.1016/j.renene.2015.09.014
  • 32. Siddiqui, M. U., & Said, S. A. M. (2015). A review of solar powered absorption systems. Renewable and Sustainable Energy Reviews 42, 93–115. https://doi.org/10.1016/j.rser.2014.10.014
  • 33. Sivalingam, S., Gopal, S. T., Pandey, V., & Parthiban, M. (2021). Experimental analysis of performance improvement of a modified vapour absorption System (VAS-GAX) for cooling applications. International Journal of Heat and Technology, 39(6), 1878–1886. https://doi.org/10.18280/ijht.390623
  • 34. Sun, N., Zhao, X., Song, Y., Liu, R., Guo, J., Zhang, Y., Huang, J., & Zhang, Z. (2021). Electroless plating Ni-P coatings on La(Fe, Si)13 hydride bulks for room-temperature magnetic-refrigeration application. Journal of Magnetism and Magnetic Materials, 525, 167685. https://doi.org/10.1016/j.jmmm.2020.167685
  • 35. Tetemke, Y., Paramasivam, V., Tadele, F., & Selvaraj, S. K. (2021). Analyzed of vapor absorption refrigeration systems powered by geothermal energy: Site in Ethiopia. Materials Today: Proceedings, 46, 7570–7580. https://doi.org/10.1016/j.matpr.2021.01.642
  • 36. Wang, X., Bierwirth, A., Christ, A., Whittaker, P., Regenauer-Lieb, K., & Chua, H. T. (2013). Application of geothermal absorption air-conditioning system: A case study. Applied Thermal Engineering, 50(1), 71–80. https://doi.org/10.1016/j.applthermaleng.2012.05.011
  • 37. Xu, J., Li, T., Chao, J., Wu, S., Yan, T., Li, W., Cao, B., & Wang, R. (2020). Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by hygroscopic salt. Angewandte Chemie - International Edition, 59(13), 5202–5210. https://doi.org/10.1002/anie.201915170
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a958e7e-f741-475d-9457-00d7e733b435
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.