PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Barrier in the valence band in the nBn detector with an active layer from the type-II superlattice

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Numerical analysis of the dark current (Id) in the type-II superlattice (T2SL) barrier (nBn) detector operated at high temperatures was presented. Theoretical calculations were compared with the experimental results for the nBn detector with the absorber and contact layers in an InAs/InAsSb superlattice separated AlAsSb barrier. Detector structure was grown using MBE technique on a GaAs substrate. The k·p model was used to determine the first electron band and the first heavy and light hole bands in T2SL, as well as to calculate the absorption coefficient. The paper presents the effect of the additional hole barrier on electrical and optical parameters of the nBn structure. According to the principle of the nBn detector operation, the electrons barrier is to prevent the current flow from the contact layer to the absorber, while the holes barrier should be low enough to ensure the flow of optically generated carriers. The barrier height in the valence band (VB) was adjusted by changing the electron affinity of a ternary AlAsSb material. Results of numerical calculations similar to the experimental data were obtained, assuming the presence of a high barrier in VB which, at the same time, lowered the detector current responsivity.
Twórcy
  • Institute of Applied Physics, Military University of Technology, 2. Kaliskiego St., 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, 2. Kaliskiego St., 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, 2. Kaliskiego St., 00-908 Warsaw, Poland
  • Vigo System S.A., Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
  • Vigo System S.A., Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
  • Institute of Applied Physics, Military University of Technology, 2. Kaliskiego St., 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, 2. Kaliskiego St., 00-908 Warsaw, Poland
Bibliografia
  • [1] Aytac, Y. et al. Effects of layer thickness and alloy composition on carrier lifetimes in mid-wave infra-red InAs/InAsSb superlattices. Appl. Phys. Lett. 105, 022107 (2014). https://doi.org/10.1063/1.4890578
  • [2] Olson, B. et al. Identification of dominant recombination mecha-nisms in narrow-bandgap InAs/InAsSb type-II superlattices and InAsSb alloys. Appl. Phys. Lett. 103, 052106 (2013). https://doi.org/10.1063/1.4817400
  • [3] White, M., 1983. Infrared Detectors. U.S. Patent 4,679,063.
  • [4] Klipstein, P., 2003. Depletionless photodiode with suppressed dark current and method for producing the same. U.S. Patent 7,795,640.
  • [5] Maimon, S. & Wicks, G. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 89, 151109 (2006). https://doi.org/10.1063/1.2360235
  • [6] Ting, D. Z.-Y. et al. Chapter 1 - Type-II Superlattice Infrared Detectors. in Advances in Infrared Photodetectors (eds. Gunapala, S. D., Rhiger, D. R. & Jagadish, C.) vol. 84 1-57 (Elsevier, 2011). https://doi.org/10.1016/B978-0-12-381337-4.00001-2
  • [7] Benyahia, D. et al. Low-temperature growth of GaSb epilayers on GaAs (001) by molecular beam epitaxy. Opto-Electron. Rev. 24, 40-45 (2016).https://doi.org/10.1515/oere-2016-0007
  • [8] Benyahia, D. et al. Molecular beam epitaxial growth and characterization of InAs layers on GaAs (001) substrate. Opt. Quant. Electron. 48, 428 (2016). https://doi.org/10.1007/s11082-016-0698-4
  • [9] Vurgaftman, I., Meyer, J. & Ram-Mohan, L. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001). https://doi.org/10.1063/1.1368156
  • [10] Birner, S. Modelling of semiconductor nanostructures and semiconductor-electrolyte interfaces. Ph.D. dissertation (Univer-sität München, Germany, 2011).
  • [11] Chuang, Sh. L. Physics of optoelectronic devices. (Wiley, New York, 1995).
  • [12] Van de Walle, C. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871-1883 (1989). https://doi.org/10.1103/PhysRevB.39.1871
  • [13] Kopytko, M. et al. Numerical Analysis of Dark Currents in T2SL nBn Detector Grown by MBE on GaAs Substrate. Proceedings 27, 37 (2019), https://doi.org/10.3390/proceedings2019027037
  • [14] Hazbun, R. et al. Theoretical study of the effects of strain balancing on the bandgap of dilute nitride InGaSbN/InAs superlattices on GaSb substrates. Infrared Phys. Technol. 69, 211-217 (2015). https://doi.org/10.1016/j.infrared.2015.01.023
  • [15] Livneh, Y. et al. k-p model for the energy dispersions and absorption spectra of InAs/GaSb type-II superlattices. Phys. Rev. B 86, 235311 (2012). https://doi.org/10.1103/PhysRevB.86.235311
  • [16] Yu, P. & Cardona, M. Fundamentals of semicon-ductors: Physics and materials properties, 4th edn. (Springer, Heidelberg, 2010).
  • [17] Adachi, S. Properties of group - IV, III-V and II-VI Semicon-ductors. (Wiley, London, 2005).
  • [18] Manyk, T. et al. Method of electron affinity evaluation for the type-2 InAs/InAs1-xSbx superlattice. J. Mater. Sci. 55, 5135-5144 (2020).https://doi.org/10.1007/s10853-020-04347-6
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021). 2. This work was supported by the funds GB/1/2018/205/ 2018/DA.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a91d8c6-25f0-409e-a62a-c80d5a54a815
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.