PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study of the influence of synthesis parameters on the physicochemical properties of iron pigments produced from waste iron sulfate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work presents a two-step method of iron red synthesis based on waste iron(II) sulfate. The synthesis was carried out using purified waste iron sulfate from titanium dioxide production. The study investigated the influence of factors such as temperature, pressure, concentration of solutions and synthesis time on the physicochemical properties of pigments. Obtained pigments were tested by instrumental analytical methods, e.g. X-ray Diffraction or BET surface area analysis. The pigments were analyzed for color, praticles size as well as for oil number. The results of the research showed a change in the physicochemical properties of the obtained pigments depending on the conditions of synthesis. It was shown that increasing the synthesis time in most cases increased the degree of crystallization of hematite in the pigments. High specific surface area, low agglomeration of pigments or low oil absorption are directly related to the crystallinity of the pigments obtained. Laboratory pigments have been found to be different from commercial pigments. The difference in properties speaks in favor of synthesized materials.
Słowa kluczowe
Rocznik
Strony
art. no. e12
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Inorganic Chemical Technology and Environment Engineering, Piastów 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Inorganic Chemical Technology and Environment Engineering, Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Amiri M., Sanjari M., Porhonar F., 2022. Microstructural evaluation of the cement stabilization of hematite-rich red soil. Case Stud. Constr. Mater., 16, e00935. DOI: 10.1016/J.CSCM.2022. E00935.
  • 2. Arbain R., Othman M., Palaniandy S., 2011. Preparation of ironoxide nanoparticles by mechanical milling. Miner. Eng., 24, 1–9. DOI: 10.1016/J.MINENG.2010.08.025.
  • 3. Arinchtein A., Schmack R., Kraffert K., Radnik J., Dietrich P., Sachse R., Kraehnert R., 2020. Role of water in phase transformations and crystallization of ferrihydrite and hematite. ACS Appl. Mater. Interfaces, 12, 38714–38722. DOI: 10.1021/asami.0c05253.
  • 4. Barb D., Diamandescu L., Mihăilă-Tărăbăsanu D., Rusi A., Morariu M., 1990. Mössbauer spectroscopy study on the hdrothermal transformation ¸-FeOOH→¸-Fe2O3. Hyperfine Iteract., 53, 285–289. DOI: 10.1007/BF02101054.
  • 5. Benhammada A., Trache D., Kesraoui M., Chelouche S., 2020. Hydrothermal synthesis of hematite nanoparticles decorated on carbon mesospheres and their synergetic action on the thermal decomposition of nitrocellulose. Nanomaterials, 10, 968. DOI:10.3390/NANO10050968.
  • 6. Bensebaa F., Zavaliche F., Ecuyer P.L., Cochrane R.W., Veres T., 2004. Microwave synthesis and characterization ofCo – ferrite nanoparticles. J. Colloid Interface Sci., 277, 104–110. DOI: 10.1016/j.jcis.2004.04.016.
  • 7. Color converter. Available at: https://www.nixsensor.com/Free-Color-Converter/.
  • 8. Cornell R.M., Givanali R., Schindler P.W., 1987. Effect of silicate species on the transformation of ferrihydrite into goethite and hematite in alkaline media. Clays Clay Miner., 35, 21–28. DOI: 10.1346/CCMN.1987.0350103.
  • 9. Dehbi A., Dehmani Y., Omari H., Lammini A., Elazhari K.,Abdallaoui A., 2020. Hematite iron oxide nanoparticles (¸Fe2O3): Synthesis and modelling adsorption of malachite green. J. Environ. Chem. Eng., 8, 103394. DOI: 10.1016/J.JECE.2019.103394.
  • 10. Diamandescu L., Mihaila-Tarabaşanu D., Popescu-Pogrion N., 1996. Hydrothermal transformation of ¸-FeOOH into Fe2O3 in the presence of silicon oxide. Mater. Lett., 27, 253–257. DOI: 10.1016/0167-577X(95)00295-2.
  • 11. Diamandescu, L., Mihaila-Tarabasanu D., Popescu-Pogrion N.,Totovina A., Bibicu I., 1999. Hydrothermal synthesis and characterization of some polycrystalline ¸-iron oxides. Ceram. Int.,25, 689–692. DOI: 10.1016/S0272-8842(99)00002-4.
  • 12. Ding X., Yu M., Wang Z., Zhang B., Li L., Li J., 2019. A promising clean way to textile colouration: cotton fabric covalently-bonded with carbon black, cobalt blue, cobalt green, and iron oxide red nanoparticles. Green Chem., 21, 6611–6621. DOI: 10.1039/C9GC02084E.
  • 13. Durmus D., 2020. CIELAB color space boundaries under theoretical spectra and 99 test color samples. Color Res. Appl., 45, 796–802. DOI: 10.1002/COL.22521.
  • 14. Fortuño-Morte M., Beltrán-Mir H., Cordoncillo E., 2020. Study of the role of praseodymium and iron in an environment-friendly reddish orange pigment based on Fe doped Pr2Zr2O7: A multifunctional material. J. Alloys Compd., 845, 155841. DOI:10.1016/J.JALLCOM.2020.155841.
  • 15. Fouad D.E., Zhang C., El-Didamony H., Yingnan L., Mekuria T.D., Shah A.H., 2019. Improved size, morphology and crystallinity of hematite (¸-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor. ResultsPhys., 12, 1253–1261. DOI: 10.1016/J.RINP.2019.01.005.
  • 16. Gong L., Hua X., Yao B., Liang J., Tian G., 2023. Novel red coposite pigment with high thermostability from iron ore tailings: Synthesis and coloring mechanism. Ceram. Int., 49, 5066–5076. DOI: 10.1016/J.CERAMINT.2022.10.021.
  • 17. Gramm G., Fuhrmann G., Zimmerhofer F., Wieser M., Huppertz H., 2020. Development of high NIR-reflective red Li2MnO3 pigments. Z. Anorg. Allg. Chem., 646, 1722–1729.DOI: 10.1002/ZAAC.202000274.
  • 18. Jozwiak W.K., Kaczmarek E., Maniecki T.P., Ignaczak W., Maniukiewicz W., 2007. Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. Appl. Catal., A, 326, 17–27. DOI: 10.1016/J.APCATA.2007.03.021.
  • 19. Kamel A.H., Abdallah A.M., El-Baradie H.Y., 1972. The effect of temperature on the properties of calcined red iron oide pigments. J. Appl. Chem. Biotech., 22, 1209–1215. DOI: 10.1002/JCTB.5020221202.
  • 20. Khanam J., Hasan M.R., Biswas B., Jahan S.A., Sharmin N., Ahmed S., Al-Reza S.M., 2023. Development of ceramic grade red iron oxide pigment from waste iron source. Heliyon, 9, e122854. DOI: 10.1016/J.HELIYON.2023.E12854.
  • 21. Krześlak A., Hoffmann J., Zieliński S., Maciejewski M., Małek T., 2005. Najlepsze Dostępne Techniki (BAT) wytyczne dla branży chemicznej w Polsce. Specjalne chemikalia nieorganiczne. Ministerstwo Środowiska, Warszawa.
  • 22. Lu Y., Xu J., Wang W., Wang T., Zong L., Wang A., 2020. Synthesis of iron red hybrid pigments from oil shale semi-coke waste. Adv. Powder Technol., 31, 2276–2284. DOI: 10.1016J.APT.2020.03.020.
  • 23. Mariani F.Q., Borth K.W., Müller M., Dalpasquale M., Anissi F.J., 2017. Sustainable innovative method to synthesize different shades of iron oxide pigments. Dyes Pigm., 137, 403–409. DOI: 10.1016/j.dyepig.2016.10.024.
  • 24. Mielicki J., 1997. Zarys wiadomości o barwie. Fundacja Rozwoju Polskiej Kolorystyki.
  • 25. Namboodiri V.V., Verma R.S., 2001. Microwave-accelerated Suzuki cross-coupling reaction in polyethylene glycol (PEG). Green Chem., 3 146-148. DOI: 10.1039/B102337N.
  • 26. Pagès G., Leroy S., Sanchez C., 2020. Non-metallurgical iron ore trade in the Roman Mediterranean: an initial synthesis of provenance and use in the case of imperial Colonia Narbo Martius (Narbonne, Aude, France). Archaeol. Anthropol. Sci., 12, 140. DOI: 10.1007/S12520-020-01083-5.
  • 27. Pérez-Arantegui J., 2021. Not only wall paintings—pigments forcosmetics. Archaeol. Anthropol. Sci., 13, 189. DOI: 10.1007/S12520-021-01399-W.
  • 28. Pfaff G., 2021. Iron oxide pigments. Phys. Sci. Rev., 6, 535–548. DOI: 10.1515/PSR-2020-0179.
  • 29. Pfaff G., 2022. The world of inorganic pigments. ChemTexts, 8, 15. DOI: 10.1007/S40828-022-00166-1.
  • 30. PN-EN ISO 787-5:1999. Ogólne metody badań pigmentów iwypełniaczy. Oznaczanie liczby olejowej.
  • 31. Rouquerol J., Avnir D., Fairbridge C.W., Everett D.H., Haynes J.M., Pernicone N., Ramsay J.D.F., Sing K.S.W., Unger K.K., 1994. Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem., 66, 1739–1758. DOI: 10.1351/PAC199466081739.
  • 32. Salgado Lopes M.M., de Cássia Silva Sant’Ana Alvarenga R.,Gonçalves Pedroti L., Lopes Ribeiro J.C., Fiorini de Carvalho A., de Paula Cardoso F., Cardoso Mendes B., 2019 Influence of the incorporation of granite waste on the hiding power and abrasion resistance of soil pigment-based paints. Constr. Build. Mater., 205, 463–474. DOI: 10.1016/ J.CONBUILDMAT.2019.02.046.
  • 33. Sander H., 2020. Colored inorganic pigments, In: McKay R.B.(Ed.), Technological applications of dispersions, 105–142. DOI: 10.1201/9781003067252-3.
  • 34. Sarkodie B., Acheampong C., Asinyo B., Zhang X., Tawiah B., 2019. Characteristics of pigments, modification, and their functionalities. Color Res. Appl., 44, 396–410. DOI: 10.1002/COL.22359.
  • 35. Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L.,Pierotti R.A., Rouquerol J., Siemieniewska T., 1985. Reportingphysisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommedations 1984). Pure Appl. Chem., 57, 603–619. DOI: 10.1351/PAC198557040603.
  • 36. Siqueira-Silva A.I., Rios C.O., Pereira E.G., 2019. Iron toxicityresistance strategies in tropical grasses: The role of apoplastic radicular barriers. J. Environ. Sci., 78, 257–266. DOI: 10.1016/J.JES.2018.10.005.
  • 37. Splinter K., 2021. Otrzymywanie pigmentów żelazowych na bazieodpadowego siarczanu(VI) żelaza(II). West Pomeranian University of Technology in Szczecin.
  • 38. Splinter K., 2022. Synteza i charakterystyka tlenków żelaza właściwościach pigmentacyjnych. West Pomeranian University of Technology in Szczecin.
  • 39. Splinter K., Lendzion-Bieluń Z., 2021. Otrzymywanie pigmentów żelazowych na bazie odpadowego siarczanu(VI) żelaza(II).In: Ledzion-Bieluń Z., Moszyński D. (Eds.), Postępy w technologii i inżynierii chemicznej 2021. 240–249. University Publishing House, West Pomeranian University of Technology in Szczecin.
  • 40. Splinter K., Lendzion-Bieluń Z., Wojciechowska A., 2021. Method of producing iron pigments. Patent No. PL437851A1.
  • 41. Splinter K., Moszyński D., Lendzion-Bieluń Z., 2023. Microwave-reactor-based preparation of red iron oxide pigment from waste iron sulfate. Materials, 16, 3242. DOI: 10.3390/MA16083242.
  • 42. Sreeram K.J., Indumathy R., Rajaram A., Nair B.U., Ramsami T., 2006. Template synthesis of highly crystalline and monodisperse iron oxide pigments of nanosize. Mater. Res. Bull., 41, 1875–1881. DOI: 10.1016/J.MATERRESBULL.2006.03.017. Stockman H.M.G., Gevers T., 2000. Color measurement by imaging spectrometry. Comput. Vision Image Understanding, 79, 236–249. DOI: 10.1006/cviu.2000.0860.
  • 43. Su C., Wang H., Liu X., 2011. Controllable fabrication andgrowth mechanism of hematite cubes. Cryst. Res. Technol.,46, 209–214. DOI: 10.1002/CRAT.201000642.
  • 44. Tadic M., Trpkov D., Kopanja L., Vojnovic S., Panjan M., 2019.Hydrothermal synthesis of hematite (¸-Fe2O3) nanoparticleforms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties. J. Alloys Compd., 792,599–609. DOI: 10.1016/J.JALLCOM.2019.03.414.
  • 45. Touazi Y., Abdi A., Leshaf A., Khimeche K., 2020. Influence of heat treatment of iron oxide on its effectiveness as anticorrsion pigment in epoxy based coatings. Prog. Org. Coat., 139, 105458. DOI: 10.1016/J.PORGCOAT.2019.105458.
  • 46. Wang Y., Xue S., Lin Q., Song D., He Y., Liu L., Zhou J., Zong M., De Yoreo J.J., Zhu J., Rosso K.M., Sushko M.L., Zhang X., 2022. Particle-based hematite crystallization is invariant to initial particle morphology. PNAS, 119, e2112679119. DOI: 10.1073/PNAS.2112679119.
  • 47. Wolska E., 1988. Relations between the existence of hydroxylions in the anionic sublattice of hematite and its infrared and X-ray characteristics. Solid State Ionics, 28–30, Part 2, 1349–1351. DOI: 10.1016/0167-2738(88)90385-2.
  • 48. Wolska E., Schwertmann U., 1989. Nonstoichiometric structures during dehydroxylation of goethite. Zeitschrift Für Kristallographie – Crystalline Materials, 189, 223–238. DOI: 10.1524/ZKRI.1989.189.14.223.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a90f12b-2a60-4b8b-9e01-9dcd1a0ae5ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.