PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-objective optimization of the green extraction conditions of bio-active compounds from a levisticum officinale WDJ Koch: Pareto optimality and compromise solutions for process management

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wieloobiektowa optymalizacja warunków zielonej ekstrakcji związków bioaktywnych z Levisticum officinale WDJ Koch: optymalność Pareto i rozwiązania kompromisowe w zarządzaniu procesami
Języki publikacji
EN
Abstrakty
EN
Plants belonging to the Apiaceae family (including Levisticum officinale WDJ Koch) are rich sources of phytochemicals and secondary metabolites, with possible health-promoting and agrochemical potential. The objective of this work was to provide important guidelines for controlling conventional aqueous extraction to obtain Levisticum officinale root extracts with maximised levels of bioactive compounds. The ultimate goal was to optimise the total phenolic compounds, flavonoid content, sugars, and total antioxidant capacity to identify the process conditions necessary to produce highly bioactive extracts that could be used in a wide range of industries. Biomass extraction of lovage root was carried out using water as the extraction solvent. To perform the optimisation of the aqueous extraction, multivariate regression models were used and multi-criteria analysis was performed using Pareto set navigation. Pareto front analysis showed that for the maximum extraction efficiency of bioactive compounds from Levisticum officinale, the optimal extraction process parameters were 0.0714 g⸱mL-1 as biomass/water ratio and a time of 35.7142 min, at the highest analysed temperature. For the highest analysed value of plant biomass/solvent ratio (0.075 g⸱mL-1) and maximum process temperature (95ºC), extraction could be carried out for 20 min or in the range 37.1429-38.5714 min. On the other hand, if the extraction time reaches 40 min and the sam-ple/solvent ratio 0.075 g⸱mL-1, the optimum process temperature is be-tween 75ºC and 95ºC.
PL
Rośliny należące do rodziny Apiaceae (w tym Levisticum officinale WDJ Koch) są bogatym źródłem fitochemikaliów i metabolitów wtórnych o potencjalnym potencjale prozdrowotnym i agrochemicznym. Celem niniejszej pracy było dostarczenie ważnych wytycznych dotyczących kontrolowania konwencjonalnej ekstrakcji wodnej w celu uzyskania ekstraktów z korzenia Levisticum officinale o zmaksymalizowanych poziomach związków bioaktywnych. Dlatego też w niniejszym badaniu oceniono i zoptymalizowano potencjał przeciwutleniający wodnych ekstraktów z Levisticum officinale pod kątem analizy wpływu parametrów procesu ekstrakcji, tj. temperatury, czasu i stosunku biomasy roślinnej do rozpuszczalnika. Ostatecznym celem była optymalizacja całkowitej zawartości związków fenolowych, flawonoidów, cukrów i całkowitej zdolności przeciwutleniającej w celu zidentyfikowania warunków procesu niezbędnych do wytworzenia wysoce bioaktywnych ekstraktów, które mogłyby być stosowane w wielu gałęziach przemysłu. Ekstrakcję biomasy korzenia lubczyku przeprowadzono przy użyciu wody jako rozpuszczalnika ekstrakcyjnego. Aby przeprowadzić optymalizację ekstrakcji wodnej, zastosowano wielowymiarowe modele regresji i przeprowadzono analizę wielokryterialną przy użyciu nawigacji zestawu Pareto.Procedury optymalizacyjne wykazały dużą złożoność rozważanego problemu badawczego, co bezpośrednio utrudnia wybór jednego najlepszego rozwiązania. W związku z tym wyznaczono zbiory rozwiązań. Analiza frontu Pareto wykazała, że dla maksymalnej wydajności ekstrakcji związków bioaktywnych z Levisticum officinale, optymalnymi parametrami procesu ekstrakcji były 0,0714 g⸱ml-1 jako stosunek biomasy do wody oraz czas 35,7142 min, w najwyższej analizowanej temperaturze. Dla najwyższej analizowanej wartości stosunku biomasy roślinnej do rozpuszczalnika (0,075 g⸱ml-1) i maksymalnej temperatury procesu (95ºC), ekstrakcję można było prowadzić przez 20 min lub w zakresie 37,1429-38,5714 min. Z drugiej strony, jeśli czas ekstrakcji osiągnie 40 min, a stosunek próbki do rozpuszczalnika 0,075 g⸱ml-1, optymalna temperatura procesu wynosi od 75ºC do 95ºC.
Rocznik
Strony
137--165
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
  • Future Production AS, Svanedamsveien 10, 4621 Kristiansand, Norway
  • Department of Machinery Exploitation and Management of Production Processes, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
  • Department of Landscape Management, Faculty of Agriculture and Technology, University of South Bohe-mia in České Budějovice, České Budějovice, 370 05, Czech Republic
  • Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, České Budějovice, 370 05, Czech Republic
Bibliografia
  • Aćimović, M. G., Kostadinović, L. M., Popović, S. J., & Dojčinović, N. S. (2015). Apiaceae seeds as functional food. Journal of Agricultural Sciences (Belgrade),60(3), 237-246.
  • Ahmadian-Kouchaksaraie, Z., Niazmand, R., & Najafi, M. N. (2016). Optimization of the subcritical water extraction of phenolic antioxidants from Crocus sativus petals of saffron industry residues: Box-Behnken design and principal component analysis.Innovative Food Science & Emerging Technologies,36, 234-244.
  • Algan Cavuldak, Ö., Vural, N., Akay, M. A., & Anlı, R. E. (2019). Optimization of ultrasound‐assisted water extraction conditions for the extraction of phenolic compounds from black mulberry leaves (Morus nigra L.) Journal of food process engineering, 42(5), e13132.
  • Azwanida NN (2015) A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med Aromat Plants 4: 196. doi:10.4172/2167-0412.1000196.
  • Batinić, P., Čutović, N., Mrđan, S., Jovanović, A.A., Čirić, K., Marinković, A., & Bugarski, B. (2022). The comparison of Ocimum basilicum and Levisticum officinale extracts obtained using different extraction solvents and techniques. Lekovite sirovine, (42),43-43.
  • Bystrzanowska, M., & Tobiszewski, M. (2019). Multi-objective optimization of microextraction procedures. TrAC Trends in Analytical Chemistry, 116, 266-273.
  • Chalker-Scott, L., & Fuchigami, L. H. (2018). The role of phenolic compounds in plant stress responses. In Low temperature stress physiology in crops (pp. 67-80). CRC press.
  • Chemat, F., & Cravotto, G. (Eds.). (2012). Microwave-assisted extraction for bioactive compounds: theory and practice (Vol. 4). Springer Science & Business Media.
  • Chethan, S., & Malleshi, N. G. (2007). Finger millet polyphenols: Optimization of extraction and the effect of pH on their stability. Food chemistry, 105(2), 862-870.
  • Chouhan, K. B. S., Tandey, R., Sen, K. K., Mehta, R., & Mandal, V. (2019). Extraction of phenolic principles: value addition through effective sample pretreatment and operational improvement. Journal of Food Measurement and Characterization, 13(1), 177-186.
  • Curve fitting. (2004). Curve fitting toolbox for use with Matlab. The MathWorks Inc, Natick. http://cda.psych.uiuc.edu/matlab_pdf/curvefit.pdf.
  • Dastan, S., Turker, I., & Isleroglu, H. (2022). Enhanced recovery of bioactive compounds from Trigonella-foenum graecum seeds by ultrasonic-assisted extraction. Journal of Food Measurement and Characterization, 16(2), 1073-1086.
  • Dixit, P., Ghaskadbi, S., Mohan, H., & Devasagayam, T. P. (2005). Antioxidant properties of germinated fenugreek seeds. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 19(11), 977-983.
  • Farahmandfar, R., Asnaashari, M., & Bakhshandeh, T. (2019). Influence of ultrasound-assist and classical extractions on total phenolic, tannin, flavonoids, tocopherol and antioxidant characteristics of Teucrium polium aerial parts. Journal of Food Measurement and Characterization, 13, 1357-1363.
  • Foroughi, A. H., & Razavi, M. J. (2022). Multi-objective shape optimization of bone scaffolds: Enhancement of mechanical properties and permeability. Acta Biomaterialia, 146, 317-340.
  • Gbashi, S., Njobeh, P. B., De Saeger, S., De Boevre, M., & Madala, N. E. (2020). Development, chemometric-assisted optimization and in-house validation of a modified pressurized hot water extraction methodology for multi-mycotoxins in maize. Food chemistry, 307, 125526.
  • Gil-Ramírez, A., Mendiola, J. A., Arranz, E., Ruíz-Rodríguez, A., Reglero, G., Ibáñez, E., & Marín, F. R. (2012). Highly isoxanthohumol enriched hop extract obtained by pressurized hot water extraction (PHWE). Chemical and functional characterization. Innovative food science & emerging technologies, 16, 54-60.
  • Gómez-Salazar, J. A., Patlán-González, J., Sosa-Morales, M. E., Segovia-Hernandez, J. G., Sánchez-Ramírez, E., & Ramírez-Márquez, C. (2022). Multi-objective optimization of sustainable red prickly pear (Opuntia streptacantha) peel drying and biocompounds extraction using a hybrid stochastic algorithm. Food and Bioproducts Processing, 132, 155-166.
  • Gonçalves, A. L. (2021). The use of microalgae and cyanobacteria in the improvement of agricultural practices: a review on their biofertilising, biostimulating and biopesticide roles. Applied Sciences, 11(2), 871.
  • Hayat, K., Hussain, S., Abbas, S., Farooq, U., Ding, B., Xia, S., ... & Xia, W. (2009). Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Separation and Purification Technology, 70(1), 63-70.
  • Humadi SS, Istudor V. Humadi, S. S., & Istudor, V. (2009). Lythrum salicaria (purple loosestrife). Medicinal use, extraction and identification of its total phenolic compounds. Farmacia, 57(2), 192-200.
  • Iqbal, S., Younas, U., Sirajuddin, Chan, K. W., Sarfraz, R. A., & Uddin, K. (2012). Proximate composition and antioxidant potential of leaves from three varieties of Mulberry (Morus sp.): a comparative study. International journal of molecular sciences, 13(6), 6651-6664.
  • Jerez, M., Pinelo, M., Sineiro, J., & Núñez, M. J. (2006). Influence of extraction conditions on phenolic yields from pine bark: assessment of procyanidins polymerization degree by thiolysis. Food chemistry, 94(3), 406-414.
  • Kaur, G., Jabbar, Z., Athar, M., & Alam, M. S. (2006). Punica granatum (pomegranate) flower extract possesses potent antioxidant activity and abrogates Fe-NTA induced hepatotoxicity in mice. Food and chemical toxicology, 44(7), 984-993.
  • Khatri, D., & Chhetri, S. B. B. (2020). Reducing sugar, total phenolic content, and antioxidant potential of nepalese plants. BioMed Research International, 2020.
  • Krivorotova, T., & Sereikaite, J. (2014). Determination of fructan exohydrolase activity in the crude extracts of plants. Electronic Journal of Biotechnology, 17(6), 329-333.
  • Lee, L. S., Lee, N., Kim, Y. H., Lee, C. H., Hong, S. P., Jeon, Y. W., & Kim, Y. E. (2013). Optimization of ultrasonic extraction of phenolic antioxidants from green tea using response surface methodology. Molecules, 18(11), 13530-13545.
  • Mahdi, A. A., Rashed, M. M., Al-Ansi, W., Ahmed, M. I., Obadi, M., Jiang, Q., ... & Wang, H. (2019). Enhancing bio-recovery of bioactive compounds extracted from Citrus medica L. Var. sarcodactylis: optimization performance of integrated of pulsed-ultrasonic/microwave technique. Journal of Food Measurement and Characterization, 13, 1661-1673.
  • Martiny, T. R., Raghavan, V., de Moraes, C. C., da Rosa, G. S., & Dotto, G. L. (2021). Optimization of green extraction for the recovery of bioactive compounds from Brazilian olive crops and evaluation of its potential as a natural preservative. Journal of Environmental Chemical Engineering, 9(2), 105130.
  • Melo, P. S., Massarioli, A. P., Denny, C., dos Santos, L. F., Franchin, M., Pereira, G. E., ... & de Alencar, S. M. (2015). Winery by-products: Extraction optimization, phenolic composition and cytotoxic evaluation to act as a new source of scavenging of reactive oxygen species. Food Chemistry, 181, 160-169.
  • Murugesh, C. S., Rastogi, N. K., & Subramanian, R. (2018). Athermal extraction of green tea: Optimisation and kinetics of extraction of polyphenolic compounds. Innovative food science & emerging technologies, 50, 207-216.
  • Özcan, M. M., Doğu, S., & Uslu, N. (2018). Effect of species on total phenol, antioxidant activity and phenolic compounds of different wild onion bulbs. Journal of Food Measurement and Characterization, 12, 902-905.
  • Parvin, K., Nahar, K., Mohsin, S. M., Al Mahmud, J., Fujita, M., & Hasanuzzaman, M. (2022). Plant phenolic compounds for abiotic stress tolerance. Managing plant production under changing environment, 193-237.
  • Plaza, M., & Turner, C. (2015). Pressurized hot water extraction of bioactives. TrAC Trends in Analytical Chemistry, 71, 39-54.
  • Radojković, M., Zeković, Z., Jokić, S., Vidović, S., Lepojević, Ž., & Milošević, S. (2012). Optimization of solid-liquid extraction of antioxidants from black mulberry leaves by response surface methodology. Food Technology and Biotechnology, 50(2), 167-176.
  • Ramirez-Atencia, C., Rodriguez-Fernandez, V., & Camacho, D. (2020). A revision on multi-criteria decision making methods for multi-UAV mission planning support. Expert Systems with Applications, 160, 113708.
  • Ribeiro, S. M. R., Barbosa, L. C. A., Queiroz, J. H., Knödler, M., & Schieber, A. (2008). Phenolic compounds and antioxidant capacity of Brazilian mango (Mangifera indica L.) varieties. Food chemistry, 110(3), 620-626.
  • Saha, J., Biswas, A., Chhetri, A., & Sarkar, P. K. (2011). Response surface optimisation of antioxidant extraction from kinema, a Bacillus-fermented soybean food. Food chemistry, 129(2), 507-513.
  • San Cristóbal, J. R. (2011). Multi-criteria decision-making in the selection of a renewable energy project in spain: The Vikor method. Renewable energy, 36(2), 498-502.
  • Sato, Y., Izui, K., Yamada, T., & Nishiwaki, S. (2017). Pareto frontier exploration in multiobjective topology optimization using adaptive weighting and point selection schemes. Structural and Multidisciplinary Optimization, 55, 409-422.
  • Shukla, S., Mehta, A., John, J., Singh, S., Mehta, P., & Vyas, S. P. (2009). Antioxidant activity and total phenolic content of ethanolic extract of Caesalpinia bonducella seeds. Food and chemical Toxicology, 47(8), 1848-1851.
  • Singh, B., Singh, N., Thakur, S., & Kaur, A. (2017). Ultrasound assisted extraction of polyphenols and their distribution in whole mung bean, hull and cotyledon. Journal of Food Science and Technology, 54, 921-932.
  • Song, J., Li, D., Liu, C., & Zhang, Y. (2011). Optimized microwave-assisted extraction of total phenolics (TP) from Ipomoea batatas leaves and its antioxidant activity. Innovative food science & emerging technologies, 12(3), 282-287.
  • Spréa, R. M., Fernandes, Â., Finimundy, T. C., Pereira, C., Alves, M. J., Calhelha, R. C., ... & Ferreira, I. C. (2020). Lovage (Levisticum officinale WDJ Koch) roots: A source of bioactive compounds towards a circular economy. Resources, 9(7), 81.
  • Szádoczki, Z., Bozóki, S., Juhász, P., Kadenko, S. V., & Tsyganok, V. (2023). Incomplete pairwise comparison matrices based on graphs with average degree approximately 3. Annals of Operations Research, 326(2), 783-807.
  • Szparaga, A. (2023a). Biostimulating Extracts from Arctium lappa L. as Ecological Additives in Soybean Seed Coating Applications. Agricultural Engineering, 27(1), 1-10.
  • Szparaga, A. (2023b). From biostimulant to possible plant bioprotectant agents. Agricultural Engineering, 27(1), 87-98.
  • Szparaga, A., Stachnik, M., Czerwińska, E., Kocira, S., Dymkowska-Malesa, M., & Jakubowski, M. (2019). Multi-objective optimization based on the utopian point method applied to a case study of osmotic dehydration of plums and its storage. Journal of food engineering, 245, 104-111.
  • Tunçtürk, M., & Özgökçe, F. (2015). Chemical composition of some Apiaceae plants commonly used in herby cheese in Eastern Anatolia. Turkish Journal of Agriculture and Forestry, 39(1), 55-62.
  • Vázquez, G., Fernández-Agulló, A., Gómez-Castro, C., Freire, M. S., Antorrena, G., & González-Álvarez, J. (2012). Response surface optimization of antioxidants extraction from chestnut (Castanea sativa) bur. Industrial Crops and Products, 35(1), 126-134.
  • Vázquez, M. B., Andreatta, A. E., Martini, R. E., Montoya, S. N., Cabrera, J. L., & Comini, L. R. (2020). Optimization of pretreatment with microwaves prior the pressurized hot water extraction of anthraquinones from Heterophyllaea pustulata, using Doehlert experimental design. Chemical Engineering and Processing-Process Intensification, 155, 108055.
  • Viacava, G. E., Roura, S. I., & Agüero, M. V. (2015). Optimization of critical parameters during antioxidants extraction from butterhead lettuce to simultaneously enhance polyphenols and antioxidant activity. Chemometrics and Intelligent Laboratory Systems, 146, 47-54.
  • Vu, H. T., Scarlett, C. J., & Vuong, Q. V. (2019). Maximising recovery of phenolic compounds and antioxidant properties from banana peel using microwave assisted extraction and water. Journal of food science and technology, 56, 1360-1370.
  • Vuong, Q. V., Golding, J. B., Stathopoulos, C. E., Nguyen, M. H., & Roach, P. D. (2011). Optimizing conditions for the extraction of catechins from green tea using hot water. Journal of separation science, 34(21), 3099-3106.
  • Wani, K. M., & Uppaluri, R. V. (2022). Pulsed ultrasound-assisted extraction of bioactive compounds from papaya pulp and papaya peel using response surface methodology: Optimization and comparison with hot water extraction. Applied Food Research, 2(2), 100178.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a8da92f-c2f5-4f3e-9b1e-df19d7d5c8a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.