PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low-temperature powder paint modified with graphene oxide

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Niskotemperaturowe lakiery proszkowe modyfikowane tlenkiem grafenu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to obtain low temperature polyurethane powder paint based on a thermosetting acrylic resin modified with graphene oxide (GO) and to investigate the protective properties of the coatings. The acrylic resin was synthesised by the radical copolymerisation reaction of 2-hydroxyethyl methacrylate (HEMA), methyl methacrylate (MMA) and n-butyl acrylate (BA). Graphene oxide was added to the resin at the synthesis stage in appropriate amounts by weight (so-called in situ method). An optimal amount of added graphene oxide of 0.5 wt% had a significant effect on the final result. Thanks to the use of a commercial crosslinker (VESTANAT B 1358/100), the coatings cured at a relatively low temperature (160°C). The curing process of the coatings was studied by differential scanning calorimetry (DSC). The cross-linked coatings were examined for appearance, physical and chemical properties, and resistance to corrosive media by electrochemical impedance spectroscopy (EIS). The presence of a modifier in the form of graphene oxide increased the hardness, scratch resistance, ductility, contact angle and resistance to corrosive media of the coatings obtained.
PL
Celem badań opisanych w artykule było otrzymanie niskotemperaturowych poliuretanowych powłok proszkowych na bazie termoutwardzalnej żywicy akrylowej modyfikowanej tlenkiem grafenu (GO) oraz określenie właściwości ochronnych powłok. Żywica akrylowa została zsyntezowana w reakcji kopolimeryzacji wolnorodnikowej metakrylanu 2-hydroksyetylu (HEMA), metakrylanu metylu (MMA) i akrylanu n-butylu (BA). Tlenek grafenu został dodany do żywicy na etapie syntezy w odpowiednich ilościach wagowych (metodą in situ). Istotny wpływ na wynik końcowy miała optymalna ilość dodanego tlenku grafenu – na poziomie 0,5% wag. Dzięki zastosowaniu komercyjnego środka sieciującego VESTANAT B 1358/100 powłoki utwardzały się w stosunkowo niskiej temperaturze (160°C). Przebieg procesu utwardzania powłok badano za pomocą różnicowej kalorymetrii skaningowej (DSC). Usieciowane powłoki analizowano pod kątem wyglądu, właściwości fizykochemicznych oraz odporności na media korozyjne, wykonując pomiar metodą elektrochemicznej spektroskopii impedancyjnej (EIS). Obecność modyfikatora w postaci tlenku grafenu zwiększyła twardość, odporność na zarysowanie, tłoczność, kąt zwilżania oraz odporność na media korozyjne otrzymanych powłok.
Rocznik
Tom
Strony
30--39
Opis fizyczny
Bibliogr. 38 rys., tab., wykr.
Twórcy
  • Rzeszow University of Technology, Faculty of Chemistry, Department of Polymers and Biopolymers, Rzeszów, Poland
  • Doctoral School of Engineering and Technical Sciences, Rzeszow University of Technology, Rzeszów, Poland
  • Rzeszow University of Technology, Faculty of Chemistry, Department of Polymers and Biopolymers, Rzeszów, Poland
autor
  • Rzeszow University of Technology, Faculty of Chemistry, Department of Polymers and Biopolymers, Rzeszów, Poland
  • Rzeszow University of Technology, Faculty of Chemistry, Department of Physical Chemistry, Rzeszów, Poland
Bibliografia
  • [1] Directive 2004/42/EC of the European Parliament and of the Council of April 21, 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products, and amending Directive 1999/13/EC.
  • [2] F. N. Jones, M. E. Nichols, S. P. Pappas. 2017. Organic Coatings: Science and Technology. New York: Wiley.
  • [3] D. Czachor-Jadacka, B. Pilch-Pitera. 2021. “Progress in Development of UV Curable Powder Coatings.” Progress in Organic Coatings 158: 106355. DOI: 10.1016/j.porgcoat.2021.106355.
  • [4] D. Czachor-Jadacka, B. Pilch-Pitera, M. Kisiel, J. Thomas. 2023. “Polyurethane Powder Coatings with Low Curing Temperature: Research on the Effect of Chemical Structure of Crosslinking Agent on the Properties of Coatings.” Progress in Organic Coatings 182: 107662. DOI: 10.1016/j.porgcoat.2023.107662.
  • [5] Z. Du, S. Wen, J. Wang, C. Yin, D. Yu, J. Luo. 2016. “The Review of Powder Coatings.” Journal of Materials Science and Chemical Engineering 4: 54–59. DOI: 10.4236/msce.2016.43007.
  • [6] A. Cambruzzi, S. Rossi, F. Deflorian. 2005. “Reduction on Protective Properties of Organic Coatings Produced by Abrasive Particles.” Wear 258(11–12): 1696–1705. DOI: 10.1016/j.wear.2004.11.023.
  • [7] A. Meroufel, S. Touzain. 2007. “EIS Characterisation of New Zinc-Rich Powder Coatings.” Progress in Organic Coatings 59(3): 197–205. DOI: 10.1016/j.porgcoat.2006.09.005.
  • [8] TIGER Drylac Powder Coatings. https://datasheets.globalspec.com/ds/ tiger-drylac-powder-coatings/tiger-dryzinc-69-90500-zinc-rich-primer/6244dac9-a03d-4d69-9fd3-2a428da9b923 (access: 17.09.2023).
  • [9] P. A. Sørensen, S. Kiil, K. Dam-Johansen, C.E. Weinell. 2009. “Anticorrosive Coatings: A Review.” Journal of Coatings Technology and Research 6: 135–176. DOI: 10.1007/s11998-008-9144-2.
  • [10] Commission Directive 2004/73/EC of April 29, 2004 adapting to technical progress for the twenty-ninth time Council Directive 67/548/EEC on the approximation of laws, regulations and administrative provisions relating to the classification, packaging, and labeling of dangerous substances.
  • [11] E. Alibakhshi, A. Naeimi, M. Ramezanzadeh, B. Ramezanzadeh, M. Mahdavian. 2018. “A Facile Synthesis Method of an Effective Anti- -Corrosion Nanopigment Based on Zinc Polyphosphate through Microwaves Assisted Combustion Method; Comparing the Influence of
  • Nanopigment and Conventional Zinc Phosphate on the Anti-Corrosion Properties of an Epoxy Coating.” Journal of Alloys and Compounds 762: 730–744. DOI: 10.1016/j.jallcom.2018.05.172
  • [12] M. Zubielewicz. 2013. „Wyroby lakierowe do zabezpieczeń przeciwkorozyjnych”. https://inzynierbudownictwa.pl/wyroby-lakierowe-dozabezpieczen-przeciwkorozyjnych/ (access: 21.09.2023).
  • [13] J. Li, P. Chen, Y. Wang, G. Wang. 2021. “Corrosion Resistance of Surface Texturing Epoxy Resin Coatings Reinforced with Fly Ash Cenospheres and Multiwalled Carbon Nanotubes.” Progress in Organic Coatings 158: 106388. DOI: 10.1016/j.porgcoat.2021.106388.
  • [14] J. Zhang, G. Kong, S. Li, Y. Le, C. Che, S. Zhang, D. Lai, X. Liao. 2022. “Graphene-Reinforced Epoxy Powder Coating to Achieve High Performance Wear and Corrosion Resistance.” Journal of Materials Research and Technology 20: 4148–4160. DOI: 10.1016/j.jmrt.2022.08.156. [15] A. Mohammadi, M. Barikani, A.H. Doctorsafaei, A.P. Isfahani, E. Shams, B. Ghalei. 2018. “Aqueous Dispersion of Polyurethane Nanocomposites Based on Calix[4]Arenes Modified Graphene Oxide Nanosheets: Preparation, Characterization, and Anti-Corrosion Properties.” Chemical Engineering Journal 349: 466–480. DOI: 10.1016/j.cej.2018.05.111.
  • [16] M.J. Nine, M.A. Cole, D.N.H. Tran, D. Losic. 2015. “Graphene: A Multipurpose Material for Protective Coatings.” Journal of Materials Chemistry A 24: 12580–12602. DOI: 10.1039/C5TA01010A.
  • [17] R. Ding, W. Li, X. Wang, T. Gui, B. Li, P. Han, H. Tian, A. Liu, X. Wang, X. Liu, X. Gao, W. Wang, L. Song. 2018. “A Brief Review of Corrosion Protective Films and Coatings Based on Graphene and Graphene Oxide.” Journal of Alloys and Compounds 764: 1039–1055. DOI: 10.1016/j.jallcom.2018.06.133.
  • [18] M.M. Gudarzi, F. Sharif. 2012. “Molecular Level Dispersion of Graphene in Polymer Matrices Using Colloidal Polymer and Graphene.” Journal of Colloid and Interface Science 366(1): 44–50. DOI: 10.1016/j.jcis.2011.09.086.
  • [19] S.S.A. Kumar, S. Bashir, K. Ramesh, S. Ramesh. 2021. “New Perspectives on Graphene/Graphene Oxide Based Polymer Nanocomposites for Corrosion Applications: The Relevance of the Graphene/Polymer Barrier Coatings.” Progress in Organic Coatings 154: 106215. DOI: 10.1016/j.porgcoat.2021.106215.
  • [20] G. Cui, Z. Bi, R. Zhanga, J. Liu, X. Yu, Z. Li. 2019. “A Comprehensive Review on Graphene-Based Anti-Corrosive Coatings.” Chemical Engineering Journal 373: 104–121. DOI: 10.1016/j.cej.2019.05.034.
  • [21] Z.S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang, H.M. Cheng. 2009. “Synthesis of High-Quality Graphene with a Pre-Determined Number of Layers.” Carbon 47(2): 493–499. DOI: 10.1016/j.carbon.2008.10.031.
  • [22] R. Al-Gaashani, A. Najjar, Y. Zakaria, S. Mansour, M. A. Atieh. 2019. “XPS and Structural Studies of High Quality Graphene Oxide and Reduced Graphene Oxide Prepared by Different Chemical Oxidation Methods.” Ceramics International 45(11): 14439–14448. DOI: 10.1016/j.ceramint.2019.04.165.
  • [23] O.C. Compton, S.T. Nguyen. 2010. “Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon‐Based Materials.” Nano, Micro, Small 6(6): 711–723. DOI: 10.1002/smll.200901934.
  • [24] X. Li, F. Wang, J. Mao. 2019. “Preparation and Properties of Thermosetting Powder/Graphene Oxide Coatings for Anticorrosion Application.” Journal of Applied Polymer Science 136(48): 48264. DOI: 10.1002/app.48264.
  • [25] J. Radziejewska, J. Grzelka. 2023. “Effect of Concentration GO and Diamond Wax and Method of Introducing Additives on Morphology and Properties of Epoxy Powder Coating.” Polymer Testing 117: 107866. DOI: 10.1016/j.polymertesting.2022.107866.
  • [26] S. S. Lee, H. Z. Y. Han, J. G. Hilborn, J. A. E. Manson. 1999. “Surface Structure Build-Up in Thermosetting Powder Coatings During Curing.” Progress in Organic Coatings 36(1–2): 79–88. DOI: 10.1016/S0300-9440(99)00029-6.
  • [27] D. Czachor-Jadacka, B. Pilch-Pitera, Ł. Florczak. 2021. „Właściwości ochronne niskotemperaturowych poliuretanowych lakierów proszkowych ozwiększonej hydrofobowości”. Ochrona przed Korozją 64(11): 363–369. DOI: 10.15199/40.2021.11.2.
  • [28] G. Iwamura, T. Agawa, K. Maruyama, H. Tekeda. 2000. “A Novel Acrylic/ Polyester System for Powder Coatings.” Surface Coatings International 83: 285–288. DOI: 10.1007/BF02692728.
  • [29] K. Pojnar, B. Pilch-Pitera, D. Czachor-Jadacka, Ł. Florczak. 2022. „Właściwości ochronne niskotemperaturowych poliuretanowych lakierów proszkowych na bazie żywic akrylowych”. Ochrona przed Korozją 65(7): 222–231. DOI: 10.15199/40.2022.7.3.
  • [30] K. Kowiorski, M. Heljak, A. Strojny-Nędza, B. Bucholc, M. Chmielewski, M. Djas, K. Kaszyca, R. Zybała, M. Małek, W. Święszkowski, A. Chlanda. 2023. “Compositing Graphene Oxide with Carbon Fibers Enables Improved Dynamical Thermomechanical Behavior of Papers Produced at a Large Scale.” Carbon 206: 26–36. DOI: 10.1016/j.carbon.2023.02.009.
  • [31] K. Pojnar, B. Pilch-Pitera, Ł. Byczyński, W. Zając, M. Walczak, A. Kramek. 2022. “Polyacrylate Resins Containing Fluoroalkyl Groups for Powder Clear Coatings.” Progress in Organic Coatings 172: 107116. DOI: 10.1016/j.porgcoat.2022.107116.
  • [32] Specifications for a Quality Label for Liquid and Powder Coatings on Aluminium for Architectural Applications: QUALICOAT Specifications. 2021. Zurich, Switzerland: QUALICOAT. [33] B. Pilch-Pitera. 2015. Farby i lakiery proszkowe: otrzymywanie, formowanie, nanoszenie i ocena właściwości. Rzeszów: Oficyna Wydawnicza Politechniki Rzeszowskiej.
  • [34] Z. Zhou, W. Xu, J. Fan, F. Ren, C. Xu. 2008. “Synthesis and Characterization of Carboxyl Group-Containing Acrylic Resin for Powder Coatings.” Progress in Organic Coatings 62(2): 179–182. DOI: 10.1016/j.porgcoat.2007.10.007.
  • [35] R. S. Rawat, N. Chouhan, M. Talwar, R.K. Diwan, A.K. Tyagi. 2019. “UV Coatings for Wooden Surfaces.” Progress in Organic Coatings 135: 490–495. DOI: 10.1016/j.porgcoat.2019.06.051.
  • [36] Q. Michaudel, V. Kottisch, B. P. Fors. 2017. “Cationic Polymerization: From Photoinitiation to Photocontrol.” Angewandte Chemie: International Edition 56(33): 9670–9679. DOI: 10.1002/anie.201701425.
  • [37] P. V. Kurian, A. Chengara, J.M. Atkins. 2012. Multifunctional Azo Initiators for Free Radical Polymerizations: Uses Thereof. United States Patent No.: US 8,097.687 B2.
  • [38] U. Poth, R. Schwalm, M. Schwartz, R. Baumstark. 2011. Acrylic Resins. Hanover: Vincentz Network.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a8d39f3-01c7-487c-92e5-81228a4361f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.