PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A tubular polycaprolactone/hyaluronic acid scaffolds for nasal cartilage tissue engineering

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this preliminary study, 3D nanofibrous porous scaffolds in the form of spiral tubes for future application as nasal cartilages implants were fabricated by combining polycaprolactone electrospun fibers with drug modified hyaluronic acid gel. It is expected that the spiral form of the scaffold with open geometries, large surface area, and distance between the scaffold walls will be helpful for improving future cell penetration into the scaffolds, nutrient transport and metabolic waste removal, which are otherwise limited in conventional electrospun tissue-engineered scaffolds. The tubular scaffolds structure, its porosity and fibers’ diameter were assessed via scanning electron microscopy, and biological properties of the scaffolds were evaluated in an in vitro study using Simulated Body Fluid (SBF). SEM results showed that apatite formed within a short period on tubular scaffolds after its immersion in SBF, demonstrating high in vitro bioactivity of the scaffolds.
Rocznik
Strony
8--12
Opis fizyczny
Bibliogr. 18 poz., rys., tab., zdj.
Twórcy
autor
  • University of Lorraine, Polytech Nancy, Nancy 2 Rue Jean Lamour, 54519 Vandoeuvre-lès-Nancy, France
autor
  • ATH University of Bielsko-Biala, Faculty of Mechanical Engineering and Computer Science, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Ceramics and Refractories, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • ATH University of Bielsko-Biala, Faculty of Mechanical Engineering and Computer Science, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
Bibliografia
  • [1] A.J. Sophia Fox, A. Bedi, S.A. Rodeo: The Basic Science of Articular Cartilage. Sport Health 1(6) (2009) 461-468.
  • [2] K. Ansari, J. Asaria, P. Hilger, P.A. Adamson: Grafts and implants in rhinoplasty - Techniques and long-term results. Operative Techniques in Otolaryngology 19 (2008) 42-58.
  • [3] A. Shafiee, E. Seyedjafari, E.S. Taherzadeh, P. Dinarvan, M. Soleimani, J. Ai.: Enhanced Chondrogenesis of Human Nasal Septum Derived Progenitors on Nanofibrous Scaffolds. Materials Science and Engineering C 40 (2014) 445-454.
  • [4] G. Tuncbilek: Congenital isolated absence of the nasal cartilaginous septum. International Journal of Pediatric Otorhinolaryngology 86 (2016) 72-76.
  • [5] Y. Liu, G. Zhou, Y. Cao: Recent Progress in Cartilage Tissue Engineering. Engineering 3 (2017) 28-35.
  • [6] R. Murugan, Z.M. Huang, F. Yang, S. Ramakrishna: Nanofibrous scaffold engineering using electrospinning. J Nanosci Nanotechnol 7 (2007) 4595-4603.
  • [7] Q.P. Pham, U. Sharma, A.G. Mikos: Electrospun poly(ε- caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules 7 (2006) 2796-2805.
  • [8] S. Chen, Z. He, G. Xu, X. Xiao: Fabrication of nanofibrous tubular scaffolds for bone tissue engineering. Materials Letters 182 (2016) 289-293.
  • [9] S. Yang, K.F. Leong, Z. Du, C.K. Chua: The design of scaffolds for use in tissue engineering. Part I. Traditional factors, Tissue Eng. 7 (2001) 679-689.
  • [10] C.H. Chen, M.Y. Lee, V.B.H. Shyu, Y.C. Chen, C.T. Chen, J.P. Chen: Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering. Materials Science and Engineering C 40 (2014) 389-397.
  • [11] S. Surucu, H. Turkoglu Sasmazel: Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds. International Journal of Biological Macromolecules 92 (2016) 321-328.
  • [12] D.S. Young. Hyaluronic Acid-based Nanofibers via Electrospinning. Masters of Science Thesis. North Carolina State University (2006).
  • [13] I. Rajzer, O. Castaño, E. Menaszek: Electrospun polymer scaffolds modified with drugs for tissue engineering. Materials Science and Engineering C 77 (2017) 493-499.
  • [14] T. Kokubo, M. Hanakawa, M. Kawashita, M. Minoda, T. Beppu, T. Miyamoto, T. Nakamura: Apatite formation on non-woven fabric of carboxymethylated chitin in SBF. Biomaterials 25 (2004) 4485-4488.
  • [15] M. Bohner, J. Lemaitre: Can bioactivity be tested in vitro with SBF solution? Biomaterials 30 (2009) 2175-2179.
  • [16] L.L. Hench: Bioceramics: from concept to clinic. J. Am. Ceram. Soc. 74 (1991) 1487-1510.
  • [17] T. Kokubo, H. Takadama: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials (2006) 2907-2915.
  • [18] Z. Cheng, S.-H. Teoh: Surface modification of ultrathin poly (ε-caprolactone) films using acrylic acid and collagen. Biomaterials 25 (2004) 1991- 2001.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a89c07e-8b94-42f5-839e-0fd1062a8bd8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.