PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fluorescence parameters of chlorophyll a halophytes as a response to salinity of post mining subsidence reservoirs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The increasing salinity of water in reservoirs is caused by climate change. On the other hand, an increase in salinity promotes the group species, halophytes that tolerate or need NaCl for growth. The aim of this study was to identify the response of facultative halophytes’ photosynthetic apparatus efficiency (PE) to water salinity. The study covered the spiny water nymph (Najas marina L.) population in four mining subsidence reservoirs. Najas marina is a facultative halophyte which means that it can occur in both fresh and salt water. This plant has the characteristics of the species invasive, such as rapid biomass growth, and wide ecological tolerance. Water salinity, described by conductivity, in the reservoirs ranged from 646 to 3061 μS∙cm -1. PE was expressed in terms of chlorophyll a fluorescence parameters, which were collected in situ using a Pocket PEA device. Water parameters using a YSI ProDSS probe were identified. Data analysis was performed using OJIP test and s the non-parametric Spearman’s rank test (p ≤ 0.05). The relationship between chlorophyll a fluorescence parameters and water parameters showed that conductivity, salinity, water clarity, and nitrate content statistically significantly affected PE (p <0.05). Generally, the higher salinity e.g. more than 3000 μS∙m -1, supports PE of facultative halophyte at the stage of optimum development in the vegetation season.
Wydawca
Rocznik
Strony
164--170
Opis fizyczny
Bibliogr. 50 poz., fot., tab., wykr.
Twórcy
autor
  • University of Silesia in Katowice, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska St. 28, 40-032 Katowice, Poland
  • University of Silesia in Katowice, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska St. 28, 40-032 Katowice, Poland
  • VSB Technical University of Ostrava, Institute of Environmental Engineering, VŠB, Ostrava, Czech Republic
  • Institute of Technology and Life Sciences - National Research Institute, Falenty, Poland
Bibliografia
  • ABD ELLAH R.G. 2020. Physical properties of inland lakes and their interaction with global warming: A case study of Lake Nasser, Egypt. Egyptian Journal of Aquatic Research. Vol. 46(2) p. 103–115. DOI 10.1016/ J .EJAR.2020.05.004.
  • AGAMI M., ESHEL A., WAISEL Y. 2006. Najas marina in Israel: It is a halophyte or a glycophyte?. Physiologia Plantarum. Vol. 61(4) p. 634–636. DOI 10.1111/j.1399-3054.1984.tb05182.x.
  • BIBER P.D. 2009. Determining salinity-tolerance of giant Salvinia using chlorophyll fluorescence. Gulf and Caribbean Research. Vol. 21 (1) p. 31–36. DOI 10.18785/gcr.2101.04.
  • BRUCET S., BOIX D., GASCÓN S., SALA J., QUINTANA X.D., BADOSA A., ..., JEPPESEN E. 2009. Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark and Mediterranean Catalonia (Spain). Ecography. Vol. 32(4) p. 692–702. DOI 10.1111/j.1600-0587.2009.05823.x.
  • CETNER M.D., DĄBROWSKI P., SAMBORSKA I.A., ŁUKASIK I., SWOCZYNA T., ..., KALAJI H.M. 2016. Zastosowanie pomiarów fluorescencji chlorofilu w badaniach środowiskowych [Using chlorophyll fluorescence measurements in environmental research]. Kosmos. Vol. 65(2) p. 197–205.
  • CHEN Z., CHEN J., ZHANG W., ZHANG T., GUANG C., MU W. 2018. Recent research on the physiological functions, applications, and biotechnological production of D-allosa. Applied Microbiology and Biotechnology. Vol. 102 p. 4269-4278.
  • CHYLAT A. et al. 2003. Program ochrony środowiska dla gminy Świętochłowice. Bielsko-Biała. Beskidzki Fundusz Ekorozwoju S.A.
  • DĄBROWSKI P., BACZEWSKA-DĄBROWSKA A.H., BUSSOTTI F., POLLASTRINI M., PIEKUT K., ..., KALAJI H.M. 2021. Photosynthetic efficiency of Microcystis ssp. under salt stress. Environmental and Experimental Botany. Vol. 186, 104459. DOI 10.1016/j.envexpbot.2021.104459.
  • FLOWERS T.J., COLMER T.D. 2008. Salinity tolerance in halophytes. New Phytologist. Vol. 179(4) p. 945–963. DOI 10.1111/j.1469-8137.2008.02531.x.
  • GHAZANFAR S.A., ALTUNDAG E., YAPRAK A.E., OSBORNE J., TUG G.N., VURAL M. 2014. Halophytes of Southwest Asia. In: Sabkha ecosystems. Eds. M.A. Khan, B. Böer, M. Öztürk, T.Z. Al Abdessalaam, M. Clüsener-Godt, B. Gul. Dordrecht. Springer p. 105–133. DOI 10.1007/978-94-007-7411-7_8.
  • GRIGORE M.N., VILLANUEVA LOZANO M., BOSCAIU NEAGU M.T., VICENTE MEANA Ó. 2012. Do halophytes really require salts for their growth and development? An experimental approach. Notulae Scientia Biologicae. Vol. 4(2) p. 23–29. DOI 10.15835/nsb427606.
  • GUPTA B., HUANG B. 2014. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics. Vol. 2014, 701596. DOI 10.1155/2014/701596.
  • GUTIERREZ M.F., TAVŞANOĞLU Ü.N., VIDAL N., YU J., MELLO F.T., ..., JEPPESEN E. 2018. Salinity shapes zooplankton communities and functional diversity and has complex effects on size structure in lakes. Hydrobiologia. Vol. 813(1) p. 237–255. DOI 10.1007/s10750-018-3529-8.
  • HALABOWSKI D., LEWIN I. 2020. Impact of anthropogenic transformations on the vegetation of selected abiotic types of rivers in two ecoregions (Southern Poland). Knowledge & Management of Aquatic Ecosystems. Vol. 421 p. 1–15. DOI 10.1051/kmae/2020026.
  • HAO S., WANG Y., YAN Y., LIU Y., WANG J., CHEN S. 2021. A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae. Vol. 7(6) p. 132. DOI 10.3390/horticulturae7060132.
  • HOFFMANN M., RAEDER U., MELZER A. 2014. Influence of the gender on growth and phenology of the dioecious macrophyte Najas marina ssp. intermedia. Hydrobiologia. Vol. 727(1) p. 167–176. DOI 10.1007/s10750-013-1795-z.
  • JAMPEETONG A., BRIX H. 2009. Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans. Aquatic Botany. Vol. 91(3) p. 181-186. DOI 10.1016/j.aquabot.2009.05.003.
  • JEPPESEN E., BRUCET S., NASELLI-FLORES L., PAPASTERGIADOU E., STEFANIDIS K., ..., BEKLIOĞLU M. 2015. Ecological impacts of global Warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia. Vol. 750(1) p. 201–227. DOI 10.1007/s10750-014-2169-x.
  • JEPPESEN E., MEERHOFF M., DAVIDSON T.A., TROLLE D., SONDERGAAR D.M., ..., NIELSEN A. 2014. Climate change impacts on lakes: An integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. Journal of Limnology. Vol. 73(S1) p. 84–107. DOI 10.4081/JLIMNOL.2014.844.
  • KALAJI M.H. 2011. Oddziaływanie abiotycznych czynników stresowych na fluorescencję chlorofilu w roślinach wybranych odmian jęczmienia Hordeum vulgare L. [Effect of abiotic stress factors on chlorophyll fluorescence in plants of selected barley cultivars Hordeum vulgare L.]. Rozprawy Naukowe i Monografie. Warszawa. SGGW. ISBN 8375832669 pp. 176.
  • KALAJI M.H., GOLTSEV V.N., ŻUK-GOŁASZEWSKA K., ZIVCAK M., BRESTIC M. 2017. Chlorophyll fluorescence understanding crop: Performance – basics and applications [eBook]. Boca Raton. CRC Press. ISBN 9781315153605 pp. 244.
  • KALAJI H.M., LOBODA T. 2007. Photosystem II of barley seedlings under cadmium and lead stress. Plant Soil and Environment. Vol. 53 (12) p. 511–516.
  • KAŠOVSKÁ K., PIERZCHAŁA Ł., SIERKA E., STALMACHOVÁ B. 2014. Impact of the salinity gradient on the mollusc fauna in flooded mine subsidences (Karvina, Czech Republic). Archives of Environmental Protection. Vol. 40(1) p. 87–99. DOI 10.2478/aep-2014-0007.
  • KHAN H.A., SIDDIQUE K.H.M., MUNIR R., COLMER T.D. 2015. Salt sensitivity in chickpea: Growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes. Journal of Plant Physiology. Vol. 182 p. 1–12. DOI 10.1016/j.jplph.2015.05.002.
  • KONDRACKI J. 2002. Geografia regionalna Polski [Regional geography of Poland]. Warszawa. PWN. ISBN 9788301138974 pp. 440.
  • KRAWCZYK R., LIS Ł., URBANIAK J. 2016. Water parameters and species composition of macrophytes in reclamation lakes in the area of a former sulphur borehole mine (SE Poland). Annales Universitatis Mariae Curie-Sklodowska. Sect. C – Biologia. Vol. 71. No. 1 p. 27–40. DOI 10.17951/c.2016.71.1.27.
  • LI X., PARK J.H., EDRAKI M., BAUMGARTL T. 2014. Understanding the salinity issue of coal mine spoils in the context of salt cycle. Environmental Geochemistry and Health. Vol. 36(3) p. 453–465. DOI 10.1007/s10653-013-9573-4.
  • MISHRA A., TANNA B. 2017. Halophytes: Potential resources for salt stress tolerance genes and promoters. Frontiers in Plant Science. Vol. 8, 829. DOI 10.3389/fpls.2017.00829.
  • LAM-GORDILLO O., MOSLEY L.M., SIMPSON S.L., WELSH D.T., DITTMANN S. 2022. Loss of benthic macrofauna functional traits correlates with changes in sediment biogeochemistry along an extreme salinity gradient in the Coorong lagoon, Australia. Marine Pollution Bulletin. Vol. 174, 113202. DOI 10.1016/j.marpolbul.2021.113202.
  • PETJUKEVICS A., SKUTE N. 2022. Chlorophyll fluorescence changes, as plant early state indicator under different water salinity regimes' on invasive macrophyte Elodea canadensis (Michx., 1803). ARPHA Preprints. Vol. 3, e82408. DOI 10.3897/arphapreprints.e82408.
  • PIERZCHAŁA Ł., SIERKA E. 2020. Do submerged plants improve the water quality in mining subsidence reservoirs? Applied Ecology and Environmental Research. Vol. 18(4) p. 5661–5672. DOI 10.15666/aeer/1804_56615672.
  • ROSZKOWSKA E. 2019. Efficiency of the photosynthetic apparatus of Myriophyllum spicatum L. under anthropopression – A case study from Upper Silesian. Studia Ecologiae et Bioethicae. Vol. 17 (3) p. 5–12. DOI 10.21697/seb.2019.17.3.01.
  • RÜEGG S., RAEDER U., MELZER A., HEUBL G., BRÄUCHLER C. 2017. Hybridisation and cryptic invasion in Najas marina L. (Hydrocharitaceae)? Hydrobiologia. Vol. 784(1) p. 381–395. DOI 10.1007/s10750-016-2899-z.
  • SCHEFFER M. 1998. Ecology of shallow lakes. London. Chapman & Hall. ISBN 0412749203 pp. 357.
  • SIERKA E., CHMURA D., STALMACHOVA B., MOLENDA T., PIERZCHAŁA Ł. 2012. Environmental and socio-economic importance of mining subsidence reservoirs. Praha. BEN Technicka Literatura. ISBN 978-80-7300-445-3 pp. 112 + Annexes.
  • SIERKA E., MOLENDA T., CHMURA D. 2009. Environmental repercussion of subsidence reservoirs reclamation. Journal of Water and Land Development. Vol. 13a p. 41–52. DOI 10.2478/v10025-010-0018-5.
  • SIERKA E., PIERZCHAŁA Ł. 2022. Role of subsidence reservoirs of urban heat island effect mitigation in human settlements: moderate climate zone. Journal Water and Land Development. Spec. Iss. p. 112–118. DOI 10.24425/jwld.2022.143726.
  • SILVA E.D., RIBEIRO R.V., FERREIRA-SILVA S.L., VIÉGAS R.A., SILVEIRA J.A.G. 2010. Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatropha curcas plants. Journal of Arid Environments. Vol. 74(10) p. 1130–1137. DOI 10.1016/j.jaridenv.2010.05.036.
  • SILVA T.M.S.D.G., WIJEYARATNE M.J.S. 2017. Environmental factors contributing to the invasion of Najas marina L. in Madu Ganga estuary, a Ramsar wetland in Sri Lanka. Sri Lanka Journal of Aquatic Sciences. Vol. 22(2) p. 109–116. DOI 10.4038/sljas.v22i2.7540.
  • STRASSER B.J., STRASSER R.J. 1995. Measuring fast fluorescence transients to address environmental questions: the JIP test. In: Photosynthesis: From light to biosphere. Ed. P. Mathis. Dordrecht. Kluwer Academic Publishers p. 977–980.
  • STRASSER R.J., TSIMILLI-MICHAEL M., QIANG S., GOLTSEV V. 2010. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochimica et Biophysica Acta. Vol. 1797(6–7) p. 1313–1326. DOI 10.1016/j.bbabio.2010.03.008.
  • STRASSER R.J., TSIMILLI-MICHAEL M., SRIVASTAVA A. 2004. Analysis of the chlorophyll fluorescence transient. In: Chlorophyll fluorescence: A signature of photosynthesis. Advances in Photosynthesis and Respiration. Ed. G.C. Papageorgiou Govindjee. Dordrecht, Holland. Springer p. 321–362.
  • TIMPANO A.J., SCHOENHOLTZ S.H., SOUCEK D.J., ZIPPER C.E. 2015. Salinity as a limiting factor for biological condition in mining–influenced central Appalachian headwater streams. Journal of the American Water Resources Association. Vol. 51(1) p. 240–250. DOI 10.1111/jawr.12247.
  • UDAWAT P., JHA R.K., SINHA D., MISHRA A., JHA B. 2016. Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP) mitigates salt and osmotic stress in transgenic tobacco plants. Frontiers in Plant Science. Vol. 7, 518. DOI 10.3389/fpls.2016.00518.
  • VINEIS P., CHAN Q., KHAN A. 2011. Climate change impacts on water salinity and health. Journal of Epidemiology and Global Health. Vol. 1(1) p. 5–10. DOI 10.1016/j.jegh.2011.09.001.
  • VOLKOV V. 2015. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Frontiers in Plant Science. Vol. 6, 873. DOI 10.3389/fpls.2015.00873.
  • WANG W., LEE X., XIAO W., LIU S., SCHULTZ N., ..., ZHAO L. 2018. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nature Geoscience. Vol. 11(6) p. 410–414. DOI 10.1038/s41561-018-0114-8.
  • WOJCIECHOWSKI T. 2007. Osiadanie powierzchni terenu pod wpływem eksploatacji węgla kamiennego na przykładzie rejonu miasta Knurowa [Subsidence of the ground surface under the influence of coal mining on the example of the Knurów region]. Przegląd Geologiczny. T. 55(7) p. 589–594.
  • WOOLWAY R.I., KRAEMER B.M., LENTERS J.D., MERCHANT C.J., O’REILLY C. M., SHARMA S. 2020. Global lake responses to climate change. Nature Reviews Earth & Environment. Vol. 1(8) p. 388–403. DOI 10.1038/s43017-020-0067-5.
  • XIA J., LI Y., ZOU D. 2004. Effects of salinity stress on PSII in Ulva lactuca as probed by chlorophyll fluorescence measurements. Aquatic Botany. Vol. 80(2) p. 129–137. DOI 10.1016/j.aqua-bot.2004.07.006.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a875dfa-4120-4eca-bc4e-d391d6a8a02d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.