PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Redox conditions, glacio-eustasy, and the status of the Cenomanian-Turonian Anoxic Event: new evidence from the Upper Cretaceous Chalk of England

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The nature of the Cenomanian–Turonian Oceanic Anoxic Event (CTOAE) and its δ13 C Excursion is considered in the light of (1) the stratigraphical framework in which the CTOAE developed in the European shelf seas, (2) conclusions that can be drawn from new detailed investigations of the Chalk succession at three locations in England, at Melton Ross and Flixton in the Northern Province where organic-rich ‘black bands’ are present, and at Dover in the Southern Province (part of the Anglo-Paris Basin) where they are absent, and (3) how these conclusion fit in with the present understanding of the CTOAE. The application of the cerium anomaly method (German and Elderfield 1990) at Dover, Melton Ross and Flixton has allowed the varying palaeoredox conditions in the Chalk Sea and its sediments to be related to the acid insoluble residues, organic carbon, δ18O (calcite), δ13C (calcite), δ13C (organic matter), Fe 2+ and Mn2+ (calcite), and P/TiO2 (acid insoluble residue). This has provided evidence that the initial stages of the δ13C Excursion in England were related to (1) a drop of sea level estimated at between 45 and 85 metres, (2) influxes of terrestrial silicate and organic detritus from adjacent continental sources and the reworking of exposed marine sediments, and (3) the presence of three cold water phases (named the Wood, Jefferies and Black) associated with the appearance of the cold-water pulse fauna during the Plenus Cold Event. Conditions in the water column and in the chalk sediment were different in the two areas. In the Northern Province, cerium-enriched waters and anoxic conditions were widespread; the δ13C pattern reflects the interplay between the development of anoxia in the water column and the preservation of terrestrial and marine organic matter in the black bands; here the CTOAE was short-lived (~0.25 Ma) lasting only the length of the Upper Cenomanian Metoicoceras geslinianum Zone. In the Southern Province, water conditions were oxic and the δ13C Excursion lasted to the top of the Lower Turonian Watinoceras devonense Zone, much longer (~1.05 Ma) than in the Northern Province. These differences are discussed with respect to (1) the Cenomanian–Turonian Anoxic Event (CTAE) hypothesis when the ocean-continent-atmosphere systems were linked, (2) limitations of chemostratigraphic global correlation, and (3) the Cenomanian-Turonian Anoxic Event Recovery (CTOAER), a new term to define the varying lengths of time it took different oceans and seas to recover once the linked ocean-continent-atmosphere system was over. The possibility is considered that glacio-eustasy (the glacial control hypothesis of Jeans et al. 1991) with the waxing and waning of polar ice sheets, in association with the degassing of large igneous provinces, may have set the scene for the development of the Cenomanian-Turonian Anoxic Event (CTAE).
Rocznik
Strony
103--152
Opis fizyczny
Bibliogr. 167 poz., rys., tab.
Twórcy
  • Department of Earth Sciences, University of Cambridge, Downing Place, Cambridge, CB2 3EN, UK
  • School of Science, University of Greenwich, Pembroke, Chatham Maritime, Kent, ME4 4TB, UK
  • Department of Mineralogy, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
  • 15 Pains Close, Pinner, Middlesex, HA5 3BN, UK
Bibliografia
  • 1. Adams, D.D., Hurtgen, M.T. and Sageman, B.B. 2010. Volcanic triggering of a biogeochemical cascade during Oceanic Anoxic Event 2. Nature Geoscience, 3, 201-204.
  • 2. Alley, N.F. and Frakes, L.A. 2003. First known Cretaceous glaciation: Livingston Tillite Member of the Adna-owie Formation, South Australia. Australian Journal of Earth Sciences, 50, 139-144.
  • 3. Arthur, M.A., Schlanger, S.O. and Jenkyns, H.C. 1987. The Cenomanian-Turonian Oceanic Anoxic Event, II. Palaeooceanographic controls on organic-matter production and preservation. In: Brooks, J. and Fleet, A.J. (Eds), Marine Petroleum Source Rocks. Geological Society Special Publications,26, 401-420.
  • 4. Arthur, M.A., Dean, W.E. and Pratt, L.M. 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian-Turonian boundary. Nature, 335, 714-717.
  • 5. Barclay, R.S., McElwain, J.C. and Sageman, B.B. 2010. Carbon sequestration activated by a volcanic CO2 pulse during Oceanic Anoxic Event 2. Nature Geoscience, 3, 205-208.
  • 6. Bice, K.L., Huber, B.T. and Norris, R.D. 2003. Extreme polar warmth during the Cretaceous greenhouse? Paradox of the late Turonian δ18O record at Deep Sea Drilling Project Site 511. Paleoceanography, 18, PA1029.18.10.1029. PA000848.
  • 7. Bice, K.K., Birgel, D., Meyers, P.A., Dahl, K.A., Hinrichs, K.-V. and Norris, R.D. 2006. A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 conditions. Palaeoceanography, 21, PA2002. 21.10.1029/2005 PA001203.
  • 8. Black, B.A. and Gibson, S.A. 2019. Deep carbon and the life cycle of large igneous provinces. Elements, 15, 319-324.
  • 9. Black, M. 1980. On Chalk, Globigerina ooze and aragonite mud. In: Jeans, C.V. and Rawson, P.F. (Eds), Andros Island, Chalk and Oceanic Oozes. Yorkshire Geological Society Occasional Publication, 5, 54-85.
  • 10. Blätter, C.L., Jenkyns, H.C., Reynard, L.M. and Henderson, G.M. 2011. Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes. Earth and Planetary Science Letters, 309, 77-88.
  • 11. Blumenberg, M. and Wiese, F. 2012. Imbalanced nutrients as triggers for black shale formation in a shallow shelf setting during the OAE 2 (Wunstorf, Germany). Biogeosciences, 9, 4139-4153.
  • 12. Blunier, T., Chappellaz, J.,Schwander, J., Dällenbach, A., Stauffer, B., Stocker, T.F., Raynaud, D., Jouzel, J., Claussen, H.B., Hammer, C.U. and Johnsen, S.J. 1998. Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature, 394, 739-743.
  • 13. Bornemann, A., Norris, R.D., Friedrich, O., Beckmann, B., Schouten, S., Sinninge Damsté, J.S., Vogel, J., Hofmann, P. and Wagner, T. 2008. Isotopic evidence for glaciation during the Cretaceous supergreenhouse. Science, 319, 189-192.
  • 14. Boyd, P.W., Jickells, T., Law, C.S., Blain, S., Boyle, E.A., Buesseler, K.O., Coale, K.H., Cullen, J.J., de Baar, H.J.W., Follows, M., Harvey, M., Lancelot, C., Levasseur, M., Owens, N.P.J., Pollard, R., Rivkin, R.B., Sarmiento, J., Schoemann, V., Smetacek, V., Takeda, S., Tsuda, A., Turner, S. and Watson, A.J. 2007. Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions. Science, 315, 612-617.
  • 15. Bralower, T.J. 1988. Calcareous nannofossil biostratigraphy and assemblages of the Cenomanian-Turonian boundary interval: implications for the origin and timing of oceanic anoxia. Paleoceanography, 3, 275-316.
  • 16. Browning, J.V., Miller, K.G., Sugarman, P.J., Kominz, M.A., McLaughlin, P.P., Kulpecz, A.A. and Feigenson, M.D. 2008. 100 Myr record of sequences, sedimentary facies and sea level change from Ocean Drilling Program onshore coreholes, U.S. Mid-Atlantic coastal plain. Basin Research, 20, 227-248.
  • 17. Cassar, N., Bender, M.L., Harnett, B.A., Fan, S., Maxim, W.J., Levy, H. and Tilbrook, B. 2007. The Southern Ocean biological response to aeolian iron deposition. Science, 317, 1067-1070.
  • 18. Collins, A.1990. The 1-10 spore colour index (SCI) scale: a universally applicable colour maturation scale, based on graded, picked palynomorphs. Mededelingen vant Rijks Geologischen Dienst, 45, 39-47.
  • 19. Corfield, R.M., Hall, M.A. and Brasier, M.D. 1990. Stable isotope evidence for foraminiferal habitats during the development of the Cenomanian/Turonian oceanic anoxic event. Geology, 18, 175-178.
  • 20. Cornford, C. 1998. Source rocks and hydrocarbons of the North Sea. In: Glennie, K.W. (Ed.), Introduction to the Petroleum Geology of the North Sea, 4th Edition, 376-462. Blackwell Scientific Publications; Oxford.
  • 21. David, T.W.E. and Browne, W.R. 1950. The geology of the Commonwealth of Australia (vol. 1), 747 pp. Edward Arnold; London.
  • 22. De Lurio, J.L. and Frakes, L.A. 1999. Glendonites as a palaeoenvironmental tool: implications for the early Cretaceous high latitude climates in Australia. Geochemica et Cosmochemica Acta, 63, 1039-1048.
  • 23. Dodsworth, P. 1996. Stratigraphy, microfossils and depositional environments of the lowermost part of the Welton Chalk Formation (late Cenomanian to early Turonian, Cretaceous) in eastern England. Proceedings of the Yorkshire Geological Society,51, 45-64.
  • 24. Du Vivier, A.D.C., Selby, D., Sageman, B.B., Jarvis, I., Gröcke, D.R. and Voigt, S. 2014. Marine 187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 389, 23-33.
  • 25. Du Vivier, A.D.C., Selby, D., Condon, D.J., Takashima, R. and Nishi, H. 2015a. Pacific 187Os/188Os isotopic chemistry and U-Pb geochronology: synchroneity of global Os isotope change across OAE 2. Earth and Planetary Science Letters, 428, 204-216.
  • 26. Du Vivier, A.D.C., Jacobson, A.D., Lehn, G.O., Selby, D., Hurtgen, M.T. and Sageman, B.B. 2015b. Ca isotope stratigraphy across the Cenomanian-Turonian OAE2: links between vulcanism, seawater geochemistry, and the carbonate fractionation factor. Earth and Planetary Science Letters, 416, 121-131.
  • 27. Embleton, B.J.J. 1984. Past global settings. Continental palaeomagmatism. In: Veevers, J.J. (Ed.), Phanerozoic earth history of Australia, 11-16, Clarendon Press; Oxford.
  • 28. Ernst, G., Schmid, F. and Seibertz, E. 1983. Event-Stratigraphie im Cenoman und Turon von NW Deutschland. Zittelina, 10, 531-554.
  • 29. Faucher, G., Erba, E., Bottini, C. and Gambacorta, G. 2017. Calcareous nannoplankton response to the latest Cenomanian Oceanic Anoxic Event 2 perturbation. Rivista Italiana di Paleoontologia e Stratigrafia, 123, 159-176.
  • 30. Filippelli, G.M. 2008. The global phosphorous cycle: past, present and future. Elements,4, 89-95.
  • 31. Filippelli, G.M., Latimer, J.C., Murray, R.W. and Flores, J.-A. 2007. Productivity records from the Southern Ocean and the equatorial Pacific Ocean: testing the glacial shelfnutrient hypothesis. Deep Sea Research II: Topical studies in Oceanography, 54, 2443-2452.
  • 32. Flögel, S., Wallmann, K. and Kuhnt, W. 2011. Cool episodes in the Cretaceous - Exploring the effects of physical forcings on the Antarctic snow accumulation. Earth and Planetary Science Letters, 307, 279-288.
  • 33. Forster, A., Schouten, S., Moriya, K., Wilson, P.A. and Sinninghe Damsté, J. S. 2007. Tropical warming and intermittent cooling during the Cenomanian/Turonian Oceanic Anoxic Event (OAE 2): Sea surface temperature records from the equatorial Atlantic. Paleoceanography, 22, PA1219, doi:10.1029/2006PA001349.
  • 34. Frakes, L.A. and Francis, J.E. 1988. A guide to Phanerozoic cold polar climates from high-latitude icerafting in the Cretaceous. Nature, 333, 547-549.
  • 35. Francis, J.E. and Frakes, L.A. 1993. Cretaceous climates. Sedi-mentology Review, 1, 17-30.
  • 36. Frijia, G. and Parente, M. 2008. Strontium isotope stratigraphy in the upper Cenomanian shallow-water carbonates of the southern Apennines: Short-term perturbations of marine Sr-87/Sr-86 during the Oceanic Anoxic Event 2. Palaeogeography, Palaeoclimatology, Palaeoecology, 261, 15-29.
  • 37. Gale, A.S. and Christensen, W.K. 1996. Occurrence of the belemnite Actinocamax plenus in the Cenomanian of SE France and its significance. Bulletin of the Geological Society of Denmark, 43, 68-77.
  • 38. Gale, A.S., Hancock, J.M. and Kennedy, W.M. 1999. Biostratigraphical and sequence correlation of the Cenomanian successions in Mangyshlak (W. Kazakhstan) and Crimea (Ukraine) with those in Southern England. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique Sciences de la Terre, 69 (Supplément A), 67-86.
  • 39. Gale, A.S., Smith, A.B., Monks, N.E.A., Young, J.A., Howard, A., Wray, D.S. and Huggett, J.M. 2000. Marine biodiversity through the Late Cenomanian-Early Turonian: palaeoceanographic controls and sequence stratigraphic biases. Journal of the Geological Society, London, 157, 745–757.
  • 40. Gale, A.S., Kennedy, W.J., Voigt, S. and Walaszczyk, I. 2005. Stratigraphy of the Upper Cenomanian-Lower Turonian Chalk succession at Eastbourne, Sussex, UK: ammonites, inoceramid bivalves and stable carbon isotopes. Cretaceous Research, 26, 460-487.
  • 41. Gale, A.S., Voigt, S., Sageman, B.B. and Kennedy, W.J. 2008. Eustatic sealevel record for the Cenomanian (Late Cretaceous) - Extension to the Western Interior Basin, USA. Geology, 36, 859-862.
  • 42. Galeotti, S., Rusciadelli, G., Sprovieri, M., Lanci, L., Gaudio, A. and Pekar, S. 2009. Sea-level control on facies architecture in the Cenomanian-Coniacian Apulian Margin (Western Tethys); a record of glacio-eustatic fluctuations during the Cretaceous greenhouse? Palaeogeography, Palaeoclimatology, Palaeoecology, 276, 196-205.
  • 43. Gaunt, G.D., Fletcher, T.P. and Wood, C.J. 1992. Geology of the country around Kingston upon Hull and Brigg. Memoir of the British Geological Survey, sheets 80 and 89 (England and Wales), 172 pp. HMSO; London.
  • 44. German, C.R. and Elderfield, H. 1990. Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography, 5, 823-833.
  • 45. Giraud, F., Reboulet, S., Deconinck, J.F., Martinez, M., Carpentier, A. and Bréziat, C. 2013. The Mid-Cenomanian Event in southeastern France: evidence from palaeontological and clay mineralogical data. Cretaceous Research, 46, 43-58.
  • 46. Gomes, M.L., Hurtgen, M.T. and Sageman, B.B. 2016. Biogeochemical sulphur cycling during Cretaceous oceanic anoxic events: A comparison of OAE1a and OAE2. Paleooceanography and Paleoclimatology, 31, 233-251.
  • 47. Gröcke, D.R. 1998. Carbon-isotope analyses of fossil plant as a chemostratigraphic and palaeoenvironmental tool. Lethaia, 31, 1-13.
  • 48. Gröcke, D.R., Price, G.D., Robinson, S.A., Baraboshkin, E.Y., Mutterlose, J. and Ruffell, A.H. 2005. The Upper Valanginian (Early Cretaceous) positive carbon-isotope event recorded in terrestrial plants. Earth and Planetary Science Letters, 240, 495-509.
  • 49. Hairapetian,V., Wilmsen, M., Ahmadi, A., Shojaei, Z., Berens-meier, M. and Majidifard, M.R. 2018. Integrated stratigraphy, facies analysis and correlation of the upper Albian-lower Turonian of the Esfahan area (Iran): Unravelling the conundrum of the so-called “Glauconitic Limestone”. Cretaceous Research, 90, 391-411.
  • 50. Hancock, J.M. 1989. Sea-level changes in the British region during the late Cretaceous. Proceedings of the Geologists’ Association, 100, 565-594.
  • 51. Hancock, J.M. and Kauffman, E.G. 1979. The great transgressions of the Late Cretaceous. Journal of the Geological Society, London, 136, 175-186.
  • 52. Hart, M.B. and Leary, P.N. 1991. Stepwise mass extinctions - the case for the Late Cenomanian event. Terra Nova, 3, 142-147.
  • 53. Hasegawa, T. 1997. Cenomanian-Turonian carbon isotope events recorded in terrestrial organic matter from northern Japan. Palaeogeography, Palaeoclimatology, Palaeoecology. 130, 2273.
  • 54. Hasegawa, T. 2003. Cretaceous terrestrial paleoenvironments of northeastern Asia suggested from carbon isotope stratigraphy: increased atmospheric ρCO2-induced climate. Jour-nal of Asian Earth Sciences, 21, 849-859.
  • 55. Hasegawa, T., Seo, S., Moriya, K., Tominaga, Y., Nemoto, T. and Naruse, T. 2010. High resolution carbon isotope stratigraphy across the Cenomanian/Turonian boundary in the Tappu area, Hokkaido, Japan. Island Arc, 2, 181-191.
  • 56. Hasegawa, T., Crampton, J.S., Schiøler, P., Field, B., Kukushi, K. and Kakizaki, Y. 2013. Carbon isotope stratigraphy and depositional anoxia through Cenomanian/Turonian boundary sequence (Upper Cretaceous) in New Zealand. Cretaceous Research, 40, 6-80.
  • 57. Hawkes, J.M. and Cramsie, J.N. 1984. Contributions to the geology of the Great Australian Basin, New South Wales. Bulletin of the Geological Survey of New South Wales, 31, 1-295.
  • 58. Hay, W.W, 2008. Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research, 29, 725-753.
  • 59. Henderson, P. and Williams, C.T. 1981. Application of intrinsic Ge detectors to the instrumental neutron activation analysis for rare earth elements in rocks and minerals. Journal of Radioanalytical Chemistry, 67, 445-452.
  • 60. Hetzel, A., März, C., Vogt, C. and Brumsack, H.-J. 2011. Geochemical environment of Cenomanian-Turonian black shale deposition at Wunstorf (northern Germany). Cretaceous Research, 32, 480-494.
  • 61. Holmden, C., Jacobson, A.D., Sageman, B.B. and Hurtgen, M.T. 2016. Response of the Cr isotope proxy to Cretaceous Ocean Anoxic Event 2 in a pelagic carbonate succession from the Western Interior Seaway. Geochimica et Cosmochimica Acta, 186, 277-295.
  • 62. Hu, X.-F., Jeans, C.V. and Dickson, J.A.D. 2012. Geochemical and stable isotope patterns of calcite cementation in the Upper Cretaceous Chalk, UK: Direct evidence from calcitefilled vugs in brachiopods. Acta Geologica Polonica, 62, 143-172.
  • 63. Hudson, J.D. 1977. Stable isotopes and limestone lithification. Journal of the Geological Society, London, 133, 637-660.
  • 64. Hut, P., Alvarez, W., Elder, W.P., Hansen, T., Kauffman, E.G., Keller, G., Shoemaker, E.M. and Weissman, P.R. 1987. Comet showers as a cause of mass extinction. Nature, 329, 118-126.
  • 65. Janetschke, N., Niebuhr, B. and Wilmsen, M. 2015. Interregional sequence stratigraphical synthesis of the Plänerkalk, Elbtal and Danubian Cretaceous groups (Germany): Cenomanian-Turonian correlations around the Mid-European Island. Cretaceous Research, 56, 530-549.
  • 66. Jarvis, I., Carson, G.A., Cooper, M.K. E., Hart, M.B., Leary, P.N., Tocher, B.A., Horne, D. and Rosenfeld, A. 1988. Microfossil assemblages and the Cenomanian-Turonian (late Cretaceous) oceanic anoxic event. Cretaceous Research, 9, 3-103.
  • 67. Jarvis, I., Gale, A.S., Jenkyns, H.C. and Pearce, M.A. 2006. Secular variation in late Cretaceous carbon isotopes: a new δ13C carbonate reference for the Cenomanian-Campanian (99.6-70.6 Ma). Geological Magazine, 143, 561-608.
  • 68. Jarvis, I., Lignum, J.S., Gröcke, R., Jenkyns, H.C. and Pearce, M.A. 2011. Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian Oceanic Anoxic Event. Paleoceanography, 26, PA3201, 1-17.
  • 69. Jeans, C.V. 1967. The Cenomanian Rocks of England, 156 pp. Unpublished PhD thesis, University of Cambridge; Cambridge.
  • 70. Jeans, C.V. 1968. The origin of the montmorillonite of the European Chalk with special reference to the Lower Chalk of England. Clay Minerals,7, 311-329.
  • 71. Jeans, C.V. 1980. Early submarine lithification in the Red Chalk and Lower Chalk of eastern England; a bacterial control model and its implications. Proceedings of the Yorkshire Geological Society, 43, 81-157.
  • 72. Jeans, C.V. 2006. Clay mineralogy of the Cretaceous strata of the British Isles. Clay Minerals, 41, 47-150.
  • 73. Jeans, C.V. and Platten, I.M. 2021. The erratic rocks of the English Chalk: how did they get there, ice transport or other means? Acta Geologica Polonica, doi: 10.24425/agp.2020.134555.
  • 74. Jeans, C.V., Merriman, R.J., Mitchell, J.G. and Bland. D.J.1982. Volcanic clays in the Cretaceous of southern England and Northern Ireland. Clay Minerals, 17, 105-156.
  • 75. Jeans, C.V., Long, D., Hall, M.A., Bland, D.J. and Cornford, C. 1991. The geochemistry of the Plenus Marls at Dover, England: evidence of fluctuating oceanographic conditions and of glacial control during the development of the Cenomanian-Turonian δ13C anomaly. Geological Magazine, 128, 604-632.
  • 76. Jeans, C.V., Wray, D.S., Merriman, R.J. and Fisher, M.J. 2000. Volcanogenic clays in Jurassic and Cretaceous strata of England and the North Sea Basin. Clay Minerals, 35, 25-55.
  • 77. Jeans, C.V., Mitchell, J.G., Fisher, M.J., Wray, D.S. and Hall, I.R. 2001. Age, origin and climatic signal of English Mesozoic clays based on K/Ar signatures. Clay Minerals, 36, 515-539.
  • 78. Jeans, C.V., Hu, X.F. and Mortimore, R.N. 2012. Calcite cements and the stratigraphical significance of the marine δ13C carbonate reference curve for the Upper Cretaceous Chalk of England. Acta Geologica Polonica,62, 173-196.
  • 79. Jeans, C.V., Long, D., Hu, X.-F. and Mortimore, R.N. 2014a. Regional hardening of Upper Cretaceous Chalk in eastern England, UK: trace element and stable isotope patterns in the Upper Cenomanian and Turonian Chalk and their significance. Acta Geologica Polonica, 64, 419-455.
  • 80. Jeans, C.V., Tosca, N.J., Boreham, S. and Hu, X.F. 2014b. Clay mineral-grain size-calcite cement relationships in Upper Cretaceous Chalk, UK: a preliminary investigation. Clay Minerals, 49, 299-325.
  • 81. Jeans, C.V., Wray, D.S. and Williams, C.T. 2015. Redox conditions in the Late Cretaceous Chalk Sea: the possible use of cerium anomalies as palaeoredox indicators in the Ceno-manian and Turonian Chalk of England. Acta Geologica Polonica,65, 345-366.
  • 82. Jeans, C.V., Turchyn, A.V. and Hu, X.-F. 2016. Sulfur isotope patterns of iron sulphide and barite nodules in the Upper Cretaceous Chalk of England and their regional significance in the origin of coloured chalks. Acta Geologica Polonica,66, 227-256.
  • 83. Jefferies, R.P.S. 1961. The palaeoecology of the Actinocamax plenus Subzone (Turonian) in the Anglo-Paris Basin. Palaeontology, 4, 1-33.
  • 84. Jefferies, R.P.S. 1963. The stratigraphy of the Actinocamax ple-nus Subzone (Turonian) in the Anglo-Paris Basin. Proceed-ings of the Geologists’ Association, 74, 1-30.
  • 85. Jenkyns, H.C., Matthews, A., Tsikos, H. and Erel, Y. 2007. Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during the Cenomanian-Turonian oceanic anoxic event. Paleoceanography, 22, PA3208, doi:10.1029/2006PA0011355.
  • 86. Jenkyns, H.C., Dickson, A.J., Ruhl, M. and Van den Boorn, S.H.J.M. 2017. Basalt-seawater interaction, the Plenus Cold Event, enhanced weathering and geochemical change: deconstructing Oceanic Anoxic Event 2 (Cenomanian-Turonian, Late Cretaceous). Sedimentology, 64, 16-43.
  • 87. Jones, C.E. and Jenkyns, H.C. 2001. Seawater strontium iso-topes, Oceanic Anoxic Events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. American Journal of Science, 301, 112-149.
  • 88. Keller, G., Han, Q., Adatte, T. and Burns, S.J. 2001. Palaeoenvironment of the Cenomanian-Turonian transition at Eastbourne, England. Cretaceous Research, 22, 391-422.
  • 89. Kominz, M.A., Browning, J.V., Miller, K.G., Sugarman, P.J., Mizintseva, S. and Scotese, C.R. 2008. Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: an error analysis. Basin Research, 20, 211-226.
  • 90. Koutsoukos, E.A.M., Leary, P.N. and Hart, M.B. 1990. Cenomanian-Turonian low-oxygen tolerant benthonic foraminifera: a case study from the Sergipe basin (N.E. Brazil) and the Western Anglo-Paris basin (Southern England). Palaeogeography, Palaeoclimatology, Palaeoecology, 77, 145-147.
  • 91. Kuroda, J., Ogawa, N.O., Tanimizu, M., Coffin, M.F., Tokuyama, H, Kitazato, H. and Ohkouchi, N. 2007. Contemporaneous massive subaerial volcanism and late Cretaceous Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 256, 211-223.
  • 92. Lamolda, M.A., Gorostidi, A. and Paul, C.R.C. 1994. Quantitative estimates of calcareous nannofossil changes across the Plenus Marls (latest Cenomanian), Dover, England - implications for the generation of the Cenomanian-Turonian boundary event. Cretaceous Research, 15, 143-164.
  • 93. Leckie, R.M., Bralower, T.J. and Cashman, R. 2002. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 17, 13.1-13.29.
  • 94. Markwick, P.J. and Rowley, D.B. 1998. The geological evidence for Triassic to Pleistocene glaciations: implications for eustacy. In: Pindell, J. and Drake, C.L. (Eds), Paleogeographic evolution and non-glacial eustacy: northern South America. SEMP Special Publication, 58, 17-43.
  • 95. Martin, J.H. 1990. Glacial-interglacial CO2 change: the iron hypothesis. Palaeoceanography, 5, 1-13.
  • 96. Meyers, S.R., Siewert, S.E., Singer, B.S., Sageman, B.B., Condon, D.J., Obradovich, J.D., Jicha, B.R. and Sawyer, D.A. 2012. Intercalibration of radioisotopic and astrochronologic time scales for the Cenomanian-Turonian boundary interval, Western Interior Basin, USA. Geology, 40, 7-10.
  • 97. Miller, K.G., Barrera, E. and Olsson, R.K. 1999. Does ice drive early Maastrichtian eustasy? Global δ18O and New Jersey sequences. Geology, 27, 783-786.
  • 98. Miller, K.G., Sugarman, P.J., Browning, J.V., Kominz, M.A., Hernandez, J.C., Olsson, R.K., Feigenson, M.D. and Van Sickel, W. 2003. Late Cretaceous chronology of large, rapid sea-level changes: glacioeustasy during the greenhouse world. Geology, 31, 585-588.
  • 99. Miller, K.G., Sugarman, P.J., Browning, J.V., Kominz, M.A., Olsson, R.K., Feigenson, M.D. and Hernandez, J.C. 2004. Upper Cretaceous sequences and sea-level history, New Jersey Coastal Plain. Geological Society of America Bulletin, 116, 368-393.
  • 100. Mitchell, S.F., Paul, C.R.C. and Gale, A.S. 1996. Carbon isotopes and sequence stratigraphy. In: Howell, J.A. and Aitken, J.F. (Eds), Sequence stratigraphy: innovations and application. Geological Society, London, Special Publications, 104, 349-377.
  • 101. Mitchell, S.F., Ball, J.M., Crowley, S.F., Marshall, J.M., Paul, C.R.C., Veltkamp, C.J. and Samir, A. 1997. Isotope data from Cretaceous chalks and foraminifera: Environmental or diagenetic signals? Geology, 25, 691-694.
  • 102. Montoya-Pino, C., Wyer, S,, Anbart, A.D., Pross, J., Oschmann,W., Van de Schootbrugge, B. and Arz, H.W. 2010. Global enhancement of ocean anoxia during Oceanic Anoxic Event 2: a quantitative approach using U isotopes. Geology, 38, 315318.
  • 103. Mort, H.P., Adatte, T., Föllmi, K. B., Keller, G., Steinmann, P., Matera, V., Berner, Z. and Stüben, D. 2007. Phosphorus and the roles of productivity and nutrient recycling during the oceanic anoxic event 2. Geology, 35, 483-486.
  • 104. Mort, H.P., Adatte, T., Keller, G., Bartels, D., Föllmi, K.B., Steinmann, P., Berner, Z. and Chellai, E.H. 2008. Organic carbon deposition and phosphorus accumulation during Oceanic Anoxic Event 2 in Tarfaya, Morocco. Cretaceous Research, 29, 1008-1023.
  • 105. Mortimore, R.N. 1986. Controls on Upper Cretaceous sedimentation in the South Downs, with particular reference to flint distribution. In: Sieveking, G. de G. and Hart, M.B. (Eds), The scientific study of Flint and Chert, 21-42. Cambridge University Press; Cambridge.
  • 106. Mortimore, R.N., Wood, C.J. and Gallois, R.W. 2001. British Upper Cretaceous Stratigraphy. Geological Conservation Review Series, 23, 558 pp.
  • 107. Mortimore, R.N. 2014. Logging the Chalk, 357pp. Whittles Publishing; Caithness.
  • 108. Mortimore, R.N. and Pomerol, B. 1998. Basin analysis in engineering geology: Chalk of the Anglo-Paris basin. In: Moore, D. and Hungr, O. (Eds), Proceedings eighth international congress International Association for Engineering Geology and the Environment, 3249-3268. Balkema; Rotterdam.
  • 109. Nagm, E. 2015. Stratigraphic significance of rapid faunal change across the Cenomanian-Turonian boundary in the Eastern Desert. Cretaceous Research, 52A, 9-24.
  • 110. Nederbragt, A.J., Thurow, J., Vonhof, H. and Brumsack, H.-J. 2004. Modelling oceanic carbon and phosphorus fluxes: implications for the cause of the late Cenomanian Oceanic Anoxic Event (OAE2). Journal of the Geological Society, London, 161, 721-728.
  • 111. Nemoto, T. and Hasegawa, T. 2011. Submillennial resolution carbon isotope stratigraphy across the Oceanic Anox Event 2 in the Tappu section, Hokkaido, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 309, 271-280.
  • 112. Oakman, C.D. and Partington, M.A. 1998. Cretaceous. In: Glennie, K.W. (Ed.), Petroleum geology of the North Sea: basic concepts and recent advances, 294-349. Blackwell Science; Oxford.
  • 113. Ogg, J.G., Hinnov, L.A. and Huang, C. 2012. Cretaceous. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D. and Ogg, G.M. (Eds), The geological time scale 2012, Vol. 1, 794-814. Elsevier; Amsterdam.
  • 114. Orth, C.J., Attrep, M., Quintana, L.R., Elder, W.P., Kauffman, E.G., Diner, R. and Villamil, T. 1993. Elemental abundance anomalies in the late Cenomanian extinction interval: a search for the source(s). Earth andPlanetary Science Letters, 117, 189-204.
  • 115. Owen, J.D., Lyons, T.W., Li, X., Macleod, K.G., Gordon, G., Kuypers, M.M.M., Anbar, A., Kuhny, W. and Severmann, S. 2012. Iron isotope and trace metal records of iron cycling in the proto-North Atlantic during the Cenomanian-Turonian oceanic anoxic event (OAE-2). Paleoceanography, 27, PA3223, doi:1029/2012PA002328.
  • 116. Owen, J.D., Gill, B.C., Jenkyns, H.C., Bates, S.M., Severmann, S., Kuypers, M.M.M., Woodfine. R.G. and Lyons, T.W. 2013. Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event2. Proceedings of the National Academy of Sciences, 110, 18407-1841
  • 117. Paul, C.R.C. and Mitchell, S.F. 1994. Is famine a common fac-tor in marine mass extinctions? Geology, 22, 679-682.
  • 118. Paul, C.R.C., Lamolda, M.A., Mitchell, S.F., Vaziri, M.R., Gorostidi, A. and Marshall, J.D. 1999. The Cenomanian-Turonian boundary at Eastbourne (Sussex, U.K.): a proposed European reference section. Palaeogeography, Palaeoclimatology, Palaeoecology, 150, 83-121.
  • 119. Paul, C.R.C., Mitchell, S.F., Marshall, J.D., Leary, P.N., Gale, A.S., Duane, A.M. and Ditchfield, P.W. 1994. Palaeoceanographic events in the Middle Cenomanian of northwest Europe. Cretaceous Research, 15, 707-738.
  • 120. Pearce, M.A., Jarvis, I. and Tocher, B.A. 2009. The Cenomanian-Turonian boundary event, OAE2 and palaeoenvironmental change in epicontinental seas: new insights from the dinocyst and geochemical records. Palaeogeography, Palaeoclimatology, Palaeoecology, 280, 207-234.
  • 121. Peryt, D and Wyrwicka, K. 1993. The Cenomanian/Turonian boundary event in Central Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 104, 185-197.
  • 122. Pogge von Strandmann, P.A.E., Jenkyns, H.C. and Woodfine, R.G. 2013. Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nature Geoscience, 6, 668-672.
  • 123. Potts, P.J. 1987. A handbook of silicate rock analysis, 622 pp. Blackie & Son Ltd.; Glasgow.
  • 124. Raven, M.R., Fike, D.A., Gomes, M.L., Webb, S.M., Bradley, S. and McClelland, H.L.O. 2018. Organic carbon burial during OAE2 driven by changes in the locus of organic matter sulfurization. Nature Communications, 9, 3409, https://doi.org/ 10.1038/s41467-018-05943-6.
  • 125. Raven, M.R., Fike, D.A., Bradley, A.S., and Gomes, M.L. 2019. Paired organic matter and pyrite δ 34S records reveal mechanism of carbon, sulphur, and iron cycle disruption during Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 512, 27-38.
  • 126. Richardt, N., Wilmsen, M. and Niebuhr, B. 2013. Late Cenomanian-Early Turonian facies development and sea-level changes in the Bodenwöhrer Senke (Danubian Cretaceous Group, Bavaria, Germany). Facies, 59, 803-827.
  • 127. Robinson, N.D. 1986. Lithostratigraphy of the Chalk Group of the North Downs, southeast England. Proceedings of the Geologists’ Association, 97, 141-170.
  • 128. Sahagian, D., Pinous, O., Olferiev, A. and Zakharov, V. 1996. Eustatic curve for the Middle Jurassic-Cretaceous based on Russian Platform and Siberian stratigraphy: zonal resolution. AAPG Bulletin, 80, 1433-1458.
  • 129. Savidge, R.A. 2000. Evidence of early glaciation of south-eastern Beringia. Canadian Journal of Earth Sciences, 57, 199-226.
  • 130. Schlanger, S.O., Arthur, M.A., Jenkyns, H.C. and Scholle, P.A. 1987. The Cenomanian-Turonian Oceanic Anoxic Event, 1. Stratigraphy and distribution of organic carbon-rich beds and the marine 13C excursion. In: Brooks, J. and Fleet, A.J. (Eds), Marine Petroleum Source Rocks. Geological Society Special Publications, 26, 371-399.
  • 131. Scott, R.W., Oboh-Ikuenobe, F.E., Beson Jr., D.G., Holbrook, J.M. and Alnahwi, A. 2018. Cenomanian-Turonian flooding cycles: U.S. Gulf Coast and Western Interior. Cretaceous Research, 89, 191-210.
  • 132. Sepkoski, J.J. 1989. Periodicity in extinction and the problem of catastrophism in the history of life. Journal of the Geological Society, London, 146, 7-19.
  • 133. Sinninghe Damste, J.S., van Bentum, E.C., Reichart, G.J., Pross, J. and Schouten, S. 2010. A CO2 decrease-driven cooling and increased latitudinal temperature gradient during the mid-Cretaceous Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 293, 97-103.
  • 134. Snow, L.J., Duncan, R.A. and Bralower, T.J. 2005. Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their relationship to Caribbean plateau construction and oxygen anoxic event 2. Paleoceanography, 20, PA3005.
  • 135. Stolldorf, T., Schenke, H.-W. and Anderson, J. B. 2012. LGM ice sheet extent in the Weddell Sea: evidence for diachronous behaviour of Antarctic Ice Sheets. Quaternary Science Reviews, 48, 29-31.
  • 136. Takashima, R., Nishi, H., Yamanaka, T., Hayashi, K., Waseda, A., Obuse, A., Tomosugi, T., Deguchi, N. and Mochizuki, S. 2010. High-resolution terrestrial carbon isotope and planktic foraminiferal records of the Upper Cenomanian to the Lower Campanian in the Northwest Pacific. Earth and Planetary Science Letters, 289, 570-582.
  • 137. Takashima, R., Nishi, H., Yamanaka, T., Tomosugi, T., Fernan-do, A.G., Tanabe, K., Moriya, K., Kawabe, F. and Hayashi, K. 2011. Prevailing oxic environments in the Pacific Ocean during the mid-Cretaceous Oceanic Anoxic Event 2. Nature Communications, 2, 234.
  • 138. Tegner, C., Storey, M., Holm, P.M., Thorarinsson, S.B., Zhao, X., Lo, C.-H. and Knudsen, M.F. 2011. Magmatism and Eurekan deformation in the High Arctic Large Igneous Province: 40Ar-39Ar age of Kap Washington Group volcanics, North Greenland. Earth and Planetary Science Letters, 303, 203-214.
  • 139. Tinsley, J. 1950. The determination of organic carbon in soils by dichromate mixtures. Transactions 4th International Congress of Soil Science, 1, 161-164.
  • 140. Tsikos, H., Jenkyns, H.J., Walsworth-Bell, B., Petrizzo, M.R., Forster, A., Kolonic, S., Erba, A., Premoli Silva, I., Baas, M., Wagner, T. and Sinninghe Damsté, J.S. 2004. Carbon-isotope stratigraphy recorded by the Cenomanian-Turonian Anoxic Event: correlation and implication based on three key localities. Journal of the Geological Society, London, 161, 711-719.
  • 141. Turgeon, S.C. and Creaser, R.A. 2008. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature, 454, 323-326.
  • 142. Ulicný, D., Hladiková, J., Attrep, M.J. Čech, S., Hradecká, L. and Svobodová, M. 1997. Sea-level changes and geochemical anomalies across the Cenomanian-Turonian boundary: Pecínov Quarry, Bohemia. Palaeogeography, Palaeoclimatology, Palaeoecology132, 265-285.
  • 143. Uramoto, G.I., Abe, Y.and Hirano, H. 2009. Carbon isotope fluctuations of terrestrial organic matter for the Upper Cretaceous (Cenomanian-Santonian) in the Obira area of Hokkaido, Japan. Geological Magazine, 146, 761-774.
  • 144. van Helmond, N.A.G.M., Ruvalcaba, I., Sluijs, A., Sinninghe Damsté, J.S. and Slomp, C.P. 2014a. Spatial extent and degree of oxygen depletion in the deep proto-North Atlantic basin during Oceanic Anoxic Event 2. Geochemistry, Geophysics, Geosystems, 15, 4254-4266.
  • 145. van Helmond, N.A.G.M., Sluijs, A., Reichart, G.-J., Sinninghe Damsté, J.S., Slomp, C.P. and Brinkhuis, H. 2014b. A perturbed hydrological cycle during Oceanic Anoxic Event 2. Geology, 42, 123-126.
  • 146. van Helmond, N.A.G.M., Sluijs, A., Sinninghe Damsté, J.S., Reichart, G.-J., Voigt, S., Erbacher, J., Pross, J. and Brinkhuis, H. 2015. Freshwater discharge controlled deposition of Cenomanian-Turonian black shales on the NW European epicontinental shelf (Wunstorf, northern Germany). Climates of the Past, 11, 495-508.
  • 147. van Helmond, N.A.G.M., Sluijs, A., Papadomanolaki, N.M., Plint, A.G., Gröcke, D., Pearce, M.A., Eldrett, J.S., Trabucho-Alexandre, J., de Walaszczyk van Schootbrugge, B. and Brinkhuis, H. 2016. Equatorward phytoplankton migration during a cold spell within the Late Cretaceous super-greenhouse. Biogeosciences, 13, 2859-2872.
  • 148. Voigt, S., Wilmsen, M., Mortimore, R.N. and Voigt, T. 2003. Cenomanian palaeotemperatures derived from the oxygen isotopic composition of brachiopods and belemnites: evaluation of Cretaceous palaeotemperature proxies. International Journal of Earth Sciences, 92, 285-299.
  • 149. Voigt, S., Erbacher, J., Mutterlose, J., Weiss, W., Westerhold, T., Wiese, F., Wilmsen, M. and Wonik, T. 2008. The Cenomanian-Turonian of the Wunstorf Section (North Germany): global stratigraphic reference section and new orbital time scale of Oceanic Anoxic Event 2. Newsletters onStratigraphy, 43, 65-89.
  • 150. Wagreich, M., Lein, R. and Sames, B. 2014. Eustasy, its controlling factors, and the limnoeustatic hypothesis - concepts inspired by Eduard Suess. Austrian Journal of Earth Sciences, 107, 115-131.
  • 151. Wang, X., Reinhard, C.T., Planavsky, N.J., Owens, J.D., Ly-ons, T.W. and Johnson, T.M. 2016. Sedimentary chromium isotopic compositions across the Cretaceous OAE2 at Demerara Rise Site 1258. Journal of Chemical Geology, 429, 85-92.
  • 152. Westermann, S., Caron, M., Fiet, N., Fleitmann, D., Matera, V., and Föllmi, K.B. 2010. Evidence for oxic conditions during the oceanic anoxic event 2 in the northern Tethyan pelagic realm. Cretaceous Research, 31, 500-514.
  • 153. Wiese, F. 2009. The Söhlde Formation (Cenomanian, Turonian) of NW Germany: shallow marine pelagic red beds. In: Scott, R.W., Jansa, L., Wang, C., Hu, X. and Wagreich, M. (Eds), Cretaceous oceanic red beds: stratigraphy, composition, origins, and palaeographic and paleoclimatic signifiance. SEPM Special Publications, 150170.
  • 154. Wilmsen, M. 2003. Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cretaceous Research, 24, 525-568.
  • 155. Wilmsen, M., Niebuhr, B. and Hiss, M. 2005. The Cenomanian of northern Germany: facies analysis of a transgressive biosedimentary system. Facies, 51 (1-4), 242-263.
  • 156. Wilmsen, M. and Nagm, E. 2013. Sequence stratigraphy of the lower Upper Cretaceous (Upper Cenomanian-Turonian) of the Eastern Desert, Egypt. Newsletters on Stratigraphy, 46, 23-46.
  • 157. Wilmsen, M., Niebuhr B., Chellouche, P., Purner, T. and Kling, M. 2010a. Facies patterns and sea-level dynamics of the early late Cretaceous transgression: a case study from the lower Danubian Cretaceous Group (Bavaria, southern Germany). Facies, 56, 483-507.
  • 158. Wilmsen, M., Niebuhr, B. and Chellouche, P. 2010b. Occurrence and significance of Cretaceous belemnites in the lower Danubian Cretaceous Group (Bavaria, southern Germany). Acta Geologica Polonica, 60, 231-241.
  • 159. Wilson, P.A., Norris, R.D. and Cooper, M.J. 2002. Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise. Geology, 30, 607-610.
  • 160. Wohlwend, S., Hart, M. and Weissert, H. 2015. Ocean current intensification during the Cretaceous oceanic anoxic event 2 - evidence from the northern Tethys. Terra Nova, 27, 147-155.
  • 161. Wood, C.J. and Smith, E.G. 1978. Lithostratigraphical classification of the Chalk in North Yorkshire, Humberside and Lincolnshire. Proceedings of the Yorkshire Geological Society, 42, 263-287.
  • 162. Wood, C.J. and Mortimore, R.N. 1995. An anomalous Black Band succession (Cenomanian-Turonian boundary interval) at Melton Ross, Lincolnshire, eastern England and its international significance. Berliner Geowissenschaftlichte Abhandlungen Reihe, E16 (Gundolf Ernst Festschrift), 277-287.
  • 163. Wood, C J., Batten, D.J., Mortimore, R.N. and Wray, D.S. 1997. The stratigraphy and correlation of the Cenomanian-Turonian boundary interval succession in Lincolnshire, eastern England. Freiberger Forschungsheft, C468, 333-346.
  • 164. Woolnough,W.G. and David, T.W.E. 1926. Cretaceous glaciation in Central Australia. Quarterly Journal of the Geological Society, London, 82, 332-351.
  • 165. Worssam B.C. and Taylor, J.H. 1969. Geology of the country around Cambridge. Memoir of the Geological Survey of Great Britain, sheet 188 (England and Wales), 159 pp. HMSO; London.
  • 166. Zheng, X.-Y., Jenkyns, H.C., Gale, A.S., Ward, D.J. and Henderson, G.M. 2013. Changing ocean circulation and hydrothermal inputs during Ocean Anoxic Event 2 (Cenomanian-Turonian): Evidence from Nd-isotopes in the European shelf sea. Earth and Planetary Science Letters, 375, 338-348.
  • 167. Zheng, X.-Y., Jenkyns, H.C., Gale, A.S., Ward, D.J. and Henderson, G.M. 2016. A climatic control on reorganization of ocean circulation during the mid-Cenomanian event and Cenomanian-Turonian oceanic anoxic event (OAE 2): Nd isotope evidence. Geology, 44, 151-154.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a81135f-6e5c-4932-8120-5270dc460530
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.