PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flow modeling in a laboratory settling tank with optional counter-current or cross-current lamella

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Design of laboratory lamella settling tank used in the laboratory researches of sedimentation process, optionally in either cross-current or counter-current. Design/methodology/approach: This paper presents a selection of geometric parameters of the device made using numerical methods to analyze the flow in designed settling tank. Findings: As a result of analyses, of the final device design was developed that allows it to obtain the proper distribution of flow velocity. The simulations allowed the selection of the proper construction of the tank, in which the velocity distributions in successive channels are comparable to the fulfillment of lamella, which will allow it to charge uniform stream of liquid (suspension). Practical implications: The use of numerical methods of modeling the flow in the settling tank allowed to fine-tune the design of the device at the early stage, and in particular the parameters of the distribution of suspension. Originality/value: The settling tank allows sedimentation to take place in both configurations with the preservation of an identical sedimentation surface. This concept allows a comparison of processes in these systems at a given identical surface load.
Rocznik
Strony
28--36
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
  • Department of Power Engineering and Environmental Protection, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Department of Power Engineering and Environmental Protection, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Department of Power Engineering and Environmental Protection, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] W.P. Kowalski, Investigation of fine grains distribution using the sedimentation analysis, Journal Of Materials Processing Technology 157 (2004) 561-565.
  • [2] W.P. Kowalski, Lamella sedimentation - The state of art and directions of development, Chemical and Process Engineering 25/3 (2004) 1163-1170.
  • [3] K. Kołodziejczyk, T. Zacharz, The suspension purification in the combined co-current and counter-current sedimentation process - Empirical model, Chemical and Process Engineering 25/3 (2004) 1107-1113.
  • [4] W.P. Kowalski, R. Mieso, Regresion models of lamella cross-current sedimentation process, Chemical and Process Engineering 22/3C (2001) 783-788.
  • [5] W.P. Kowalski, K. Kołodziejczyk, T. Zacharz, The investigations of a lamella concurrent sedimentation process, Chemical and Process Engineering 22/3C (2001) 777-782.
  • [6] K. Kołodziejczyk, The modelling of laboratory multiflux settling tank work, Polish Journal of Environmental Studies 20/4A (2011) 130-135.
  • [7] M. Banaś, The dependence of sedimentation efficiency on suspension concentration, Chemical and Process Engineering 25/3I (2004) 659-664.
  • [8] M. Banaś, Computer simulations of the sedimentation process model which considers internal interactions among solid phase particles, Chemical and Process Engineering 25/3I (2004) 665-671.
  • [9] A.M. Goula, M. Kostoglou, T.D. Karapantsios, A.I. Zouboulis, A CFD methodology for the design of sedimentation tanks in potable water treatment, Chemical Engineering Journal 140 (2008) 110-121.
  • [10] F. Rostami, M. Shahrokhi, Md Said, R. Abdullah, Syafalni, Numerical modeling on inlet aperture effects on flow pattern in primary settling tanks, Applied Mathematical Modelling 35/6 (2011) 3012-3020.
  • [11] K. Samaras, A. Zouboulis, T. Karapantsios, M. Kostoglou, A CFD-based simulation study of a large scale flocculation tank for potable water treatment, Chemical Engineering 162 (2010) 208-216.
  • [12] S. Xanthos, M. Gong, K. Ramalingam, J. Fillos, A. Deur, K. Beckmann, et. al., Performance Assessment of Secondary Settling Tanks Using CFD Modeling, Water Resources Management 25/4 (2011) 1169-1182.
  • [13] T. Bajcar, F. Steinman, B. Sirok, T. Preseren, Sedimentation efficiency of two continuously operating circular settling tanks with different inlet- and outlet arrangements, Chemical Engineering Journal 178 (2011) 217-224.
  • [14] R.M. Bowen, Theory of mixtures, A.C. Eringen (Ed.), Continuum Physics, Academic Press, New York, 1976.
  • [15] D. Gidaspow, R. Bezburuah, J. Ding, Hydrodynamics of Circulating Fluidized Beds, Kinetic Theory Approach, In Fluidization VII, Proceedings of the 7th Engineering Foundation Conference on Fluidization, 1992, 75-82.
  • [16] W.P. Kowalski, K. Kołodziejczyk, T. Zacharz, Application of CFdesign software to visualization of flow suspension in a prototype settling tank, Proceedings of the 7th International Conference The Experience of Designing and Application of CAD Systems In Microelectronics, 2003, 473-477.
  • [17] S.V. Patankar, Numerical heat transfer and fluid flow, Hemisphere Publishing, New York, 1980.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a7d3a55-6d5b-420a-94fd-1933a1884e33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.