PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Gas Pressure on Powder Size and Morphology in The Production of AZ91 Powder by Gas Atomization Method

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the effect of gas pressure on the shape and size of the AZ91 alloy powder produced by using the gas atomization method was investigated experimentally. Experiments were carried out at 820°C constant temperature in 2-mm nozzle diameter and by applying 4 different gas pressures (0.5, 1.5, 2.5 and 3.5 MPa). Argon gas was used to atomize the melt. Scanning electron microscope (SEM) to determine the shape of produced AZ91 powders, XRD, XRF and SEM-EDX analysis to determine the phases forming in the internal structures of the produced powders and the percentages of these phases and a laser measuring device for powder size analysis were used. Hardness tests were carried out to determine the mechanical properties of the produced powders. The general appearances of AZ91 alloy powders produced had general appearances of ligament, acicular, droplet, flake and spherical shape, but depending on the increase in gas pressure, the shape of the powders is seen to change mostly towards flake and spherical. It is determined that the finest powder was obtained at 820°C with 2 mm nozzle diameter at 3.5 MPa gas pressure and the powders had complex shapes in general.
Twórcy
autor
  • Kastamonu University, Cide Rifat Ilgaz Vocational High School, Kastamonu, Turkey
autor
  • Karabük University, Faculty of Technology, Department of Manufacturing Engineering, Karabük, Turkey
autor
  • Karabük University, Faculty of Technology, Department of Manufacturing Engineering, Karabük, Turkey
Bibliografia
  • [1] M. K. Kulekci, The International Journal of Advanced Manufacturing Technology 39 (9), 851-865 (2008).
  • [2] K. Cho, T. Sano, K. Doherty, C. Yen, G. Gazonas, J. Montgomery, R. DeLorme, Army Research Lab Aberdeen Proving Ground Md (2009).
  • [3] K. K. Deng, J. C. Li, K. B. Nie, X. J. Wang, J. F. Fan, Materials Science and Engineering A 624, 62-70 (2015).
  • [4] M. Forsyth, P. C. Howlett, S. K. Tan, D. R. MacFarlane, N. Birbilis, Electrochemical and solid-state letters 9 (11), B52-B55 (2006).
  • [5] F. Czerwinski, Corrosion Science 86, 1-16 (2014).
  • [6] W. Zhang, B. Tian, K. Q. Du, H. X. Zhang, F. H. Wang, Int. J. of Electrochemical Science 6, 5228-5248 (2011).
  • [7] M. Yıldırım, D. Özyürek, Materials & Design 51, 767-774 (2013).
  • [8] G. Neite, K. Kubota, K. Higashi, F. Hehmann, Materials science and technology (1996).
  • [9] D. H. StJohn, M. A. Qian, M. A. Easton, P. Cao, Z. Hildebrand, Metallurgical and Materials Transactions A 36 (7), 1669-1679 (2005).
  • [10] M. Qian, A. Das, Scripta materialia 54 (5), 881-886 (2006).
  • [11] D. Vinotha, K. Raghukandan, U. T. S. Pillai, B. C. Pai, Transactions of the Indian Institute of Metals 62(6), 521-532 (2009).
  • [12] M. Mondet, E. Barraud, S. Lemonnier, J. Guyon, N. Allain, T. Grosdidier, Acta Materialia 119, 55-67 (2016).
  • [13] B. Han, D. Gu, Y. Yang, L. Fang, G. Peng, C. Yang, International Journal Of Electrochemical Science 12 (1), 374-385 (2017).
  • [14] L. Čížek, M. Greger, L. Pawlica, L.A. Dobrzański, T. Tański, Journal of Materials Processing Technology 157, 466-471 (2004).
  • [15] C. L. Mendis, K. Hono, 4-Understanding precipitation processes in magnesium alloys, M. O. Pekguleryuz, K. U. Kainer, A. A. Kaya (Eds.), Fundamentals of Magnesium Alloy Metallurgy 125-151 (2013).
  • [16] M. M. Avedesian, H. Baker, ASM Speciality Handbook: Magnesium and Magnesium alloys. ASM International 59, 60 (1999).
  • [17] R. M. German, Powder Metallurgy Science MPIF-Metal Powder Industries Federation. Princeton, USA (1994).
  • [18] A. Lawley, Atomization: the production of metal powders. Metal Powder Industries Federation, 1105 College Rd. East, Princeton, New Jersey 08540-6692, USA, 159 (1992).
  • [19] S. Buytoz, F. Dagdelen, S. Islak, M. Kok, D. Kir, E. Ercan, Journal of Thermal Analysis and Calorimetry 117 (3), 1277-1283 (2014).
  • [20] S. Islak, S. Buytoz, O. Eski, Journal Of Optoelectronics And Advanced Materials 17 (1-2), 211-215 (2015).
  • [21] S. Islak, E. Çelik, D. Kir, C. Özorak, Russian Journal of Non-Ferrous Metals 57 (4), 374-380 (2016).
  • [22] E. Klar, J. W. Fesko, Gas and water atomization. Metals handbook 7, 25-39 (1984).
  • [23] Ş. Karagöz, R. Yamanoğlu, Ş. H. Atapek, Journal of Engineering and Architecture Faculty of Eskişehir Osmangazi University 22 (3) (2009).
  • [24] Ş. Oğuz, Z. Öztürk, E. Uzun, A. Kurt, M. Boz, 6th International Advanced Technologies Symposium (IATS’11), 565, (2011).
  • [25] M. Aydın, R. Ünal, Makine Teknolojileri Elektronik Dergisi 1, 69-76 (2007).
  • [26] H. Gökmeşe, B. Bostan, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 1 (1), 1-8 (2013).
  • [27] I. Uslan, S. Kucukarslan, Journal Of The Faculty Of Engineering And Architecture Of Gazı University 25 (1), 1-8 (2010). 1594
  • [28] J. Baram, Materials Science and Engineering 98, 65-69 (1988).
  • [29] H. F. Fischmeister, A. D. Ozerskii, L. Olsson, Powder metallurgy 25 (1), 1-9 (1982).
  • [30] T. W. Clyne, R. A. Ricks, P. J. Goodhew, International Journal of Rapid Solidification 1 (1), 59-80 (1984).
  • [31] A. J. Aller, A. Losada, Powder Metall. Int. 21 (5), 15-19 (1989).
  • [32] N. J. Grant, Metallurgical and Materials Transactions A 23 (4), 1083-1093 (1992).
  • [33] D. Daloz, G. Michot, International Journal of Rapid Solidification 9 (4), 289-304 (1996).
  • [34] J. M. Zhang, B. L. Jıang, Z. H. Wang, S. Yuan, H. Q. Nan, H. B. Luo, Research & Development, (2007).
  • [35] A. Boby, U. T. S. Pillai, B. C. Pai, Transactions of the Indian Institute of Metals 66 (2), 105-108 (2013).
Uwagi
EN
1. This work was supported by Scientific Research Projects Coordination Unit of Karabük University. Project Number: KBÜ-BAP-15/2-DR-001.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a751a3f-c5ae-456d-a527-4733c0ca89ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.